Step
*
1
1
2
of Lemma
fps-Pascal-iff
1. r : CRng
2. x : Atom
3. y : Atom
4. f : PowerSeries(r)
5. ¬(x = y ∈ Atom)
6. (λb.(+r (-r case bag-diff(AtomDeq;b;{x}) of inl(d) => f d | inr(z) => 0)
(+r (-r case bag-diff(AtomDeq;b;{y}) of inl(d) => f d | inr(z) => 0) (f b))))
= (λb.(+r (-r if bag-deq-member(AtomDeq;y;b) then 0 if bag-deq-member(AtomDeq;x;b) then 0 else f b fi )
...))
∈ (bag(Atom) ⟶ |r|)
7. b : bag(Atom)
⊢ (f (({x} + {y}) + b)) = ((f ({x} + b)) +r (f ({y} + b))) ∈ |r|
BY
{ (((ApFunToHypEquands `Z' ⌜Z (({x} + {y}) + b)⌝ ⌜|r|⌝ (-2)⋅ THEN Auto) THEN Reduce(-1) THEN Thin (-3))
THEN Subst' bag-deq-member(AtomDeq;y;({x} + {y}) + b) ~ tt -1
THEN Try (Complete ((RepUR ``bag-deq-member bag-append deq-member single-bag eqof atom-deq`` 0
THEN AutoBoolCase ⌜x =a y⌝⋅
THEN AutoBoolCase ⌜y =a y⌝⋅)))
THEN Reduce (-1)
THEN Subst' bag-deq-member(AtomDeq;x;({x} + {y}) + b) ~ tt -1
THEN Try (Complete ((RepUR ``bag-deq-member bag-append deq-member single-bag eqof atom-deq`` 0
THEN AutoBoolCase ⌜x =a x⌝⋅
)))
THEN Reduce (-1)) }
1
1. r : CRng
2. x : Atom
3. y : Atom
4. f : PowerSeries(r)
5. ¬(x = y ∈ Atom)
6. b : bag(Atom)
7. (+r (-r case bag-diff(AtomDeq;({x} + {y}) + b;{x}) of inl(d) => f d | inr(z) => 0)
(+r (-r case bag-diff(AtomDeq;({x} + {y}) + b;{y}) of inl(d) => f d | inr(z) => 0) (f (({x} + {y}) + b))))
= (+r (-r 0)
(+r 0
(+r 0
(+r
(-r
case bag-diff(AtomDeq;({x} + {y}) + b;{y})
of inl(d) =>
if bag-deq-member(AtomDeq;x;d) then 0 else f d fi
| inr(z) =>
0)
(-r
case bag-diff(AtomDeq;({x} + {y}) + b;{x})
of inl(d) =>
if bag-deq-member(AtomDeq;y;d) then 0 else f d fi
| inr(z) =>
0)))))
∈ |r|
⊢ (f (({x} + {y}) + b)) = ((f ({x} + b)) +r (f ({y} + b))) ∈ |r|
Latex:
Latex:
1. r : CRng
2. x : Atom
3. y : Atom
4. f : PowerSeries(r)
5. \mneg{}(x = y)
6. (\mlambda{}b.(+r (-r case bag-diff(AtomDeq;b;\{x\}) of inl(d) => f d | inr(z) => 0)
(+r (-r case bag-diff(AtomDeq;b;\{y\}) of inl(d) => f d | inr(z) => 0) (f b))))
= (\mlambda{}b.(+r
(-r
if bag-deq-member(AtomDeq;y;b) then 0
if bag-deq-member(AtomDeq;x;b) then 0
else f b
fi )
(+r if bag-deq-member(AtomDeq;x;b) then 0 else f b fi
(+r if bag-deq-member(AtomDeq;y;b) then 0 else f b fi
(+r
(-r
case bag-diff(AtomDeq;b;\{y\})
of inl(d) =>
if bag-deq-member(AtomDeq;x;d) then 0 else f d fi
| inr(z) =>
0)
(-r
case bag-diff(AtomDeq;b;\{x\})
of inl(d) =>
if bag-deq-member(AtomDeq;y;d) then 0 else f d fi
| inr(z) =>
0))))))
7. b : bag(Atom)
\mvdash{} (f ((\{x\} + \{y\}) + b)) = ((f (\{x\} + b)) +r (f (\{y\} + b)))
By
Latex:
(((ApFunToHypEquands `Z' \mkleeneopen{}Z ((\{x\} + \{y\}) + b)\mkleeneclose{} \mkleeneopen{}|r|\mkleeneclose{} (-2)\mcdot{} THEN Auto)
THEN Reduce(-1)
THEN Thin (-3))
THEN Subst' bag-deq-member(AtomDeq;y;(\{x\} + \{y\}) + b) \msim{} tt -1
THEN Try (Complete ((RepUR ``bag-deq-member bag-append deq-member single-bag eqof atom-deq`` 0
THEN AutoBoolCase \mkleeneopen{}x =a y\mkleeneclose{}\mcdot{}
THEN AutoBoolCase \mkleeneopen{}y =a y\mkleeneclose{}\mcdot{})))
THEN Reduce (-1)
THEN Subst' bag-deq-member(AtomDeq;x;(\{x\} + \{y\}) + b) \msim{} tt -1
THEN Try (Complete ((RepUR ``bag-deq-member bag-append deq-member single-bag eqof atom-deq`` 0
THEN AutoBoolCase \mkleeneopen{}x =a x\mkleeneclose{}\mcdot{}
)))
THEN Reduce (-1))
Home
Index