Nuprl Lemma : fps-Pascal-iff
∀[r:CRng]. ∀[x,y:Atom]. ∀[f:PowerSeries(r)].
  fps-Pascal(r;x;y;f) ⇐⇒ f = (((((1-atom(y))*f(x:=0))+((1-atom(x))*f(y:=0)))-f(x:=0)(y:=0))*Δ(x,y)) ∈ PowerSeries(r) 
  supposing ¬(x = y ∈ Atom)
Proof
Definitions occuring in Statement : 
fps-pascal: Δ(x,y), 
fps-Pascal: fps-Pascal(r;x;y;f), 
fps-elim-x: f(x:=0), 
fps-mul: (f*g), 
fps-sub: (f-g), 
fps-add: (f+g), 
fps-atom: atom(x), 
fps-one: 1, 
power-series: PowerSeries(X;r), 
atom-deq: AtomDeq, 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
iff: P ⇐⇒ Q, 
not: ¬A, 
atom: Atom, 
equal: s = t ∈ T, 
crng: CRng
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
uimplies: b supposing a, 
fps-atom: atom(x), 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
implies: P ⇒ Q, 
rev_implies: P ⇐ Q, 
fps-Pascal: fps-Pascal(r;x;y;f), 
all: ∀x:A. B[x], 
not: ¬A, 
false: False, 
true: True, 
subtype_rel: A ⊆r B, 
so_apply: x[s], 
infix_ap: x f y, 
rng: Rng, 
crng: CRng, 
so_lambda: λ2x.t[x], 
prop: ℙ, 
power-series: PowerSeries(X;r), 
fps-elim: fps-elim(x), 
fps-add: (f+g), 
fps-sub: (f-g), 
fps-neg: -(f), 
fps-coeff: f[b], 
fps-elim-x: f(x:=0), 
squash: ↓T, 
guard: {T}, 
assert: ↑b, 
bnot: ¬bb, 
sq_type: SQType(T), 
or: P ∨ Q, 
exists: ∃x:A. B[x], 
uiff: uiff(P;Q), 
it: ⋅, 
unit: Unit, 
bool: 𝔹, 
bfalse: ff, 
btrue: tt, 
ifthenelse: if b then t else f fi , 
isl: isl(x), 
top: Top, 
ringeq_int_terms: t1 ≡ t2, 
sq_or: a ↓∨ b, 
nequal: a ≠ b ∈ T , 
bor: p ∨bq, 
deq-member: x ∈b L, 
so_apply: x[s1;s2;s3], 
so_lambda: so_lambda3, 
append: as @ bs, 
bag-deq-member: bag-deq-member(eq;x;b), 
atom-deq: AtomDeq, 
bag-append: as + bs, 
single-bag: {x}, 
fps-pascal: Δ(x,y), 
empty-bag: {}, 
fps-single: <c>, 
fps-one: 1, 
bag-eq: bag-eq(eq;as;bs), 
bag-count: (#x in bs), 
bag-all: bag-all(x.p[x];bs), 
bag-null: bag-null(bs), 
null: null(as), 
nil: [], 
count: count(P;L), 
bag-map: bag-map(f;bs), 
bag-reduce: bag-reduce(x,y.f[x; y];zero;bs), 
lt_int: i <z j, 
band: p ∧b q
Lemmas referenced : 
istype-void, 
power-series_wf, 
istype-atom, 
crng_wf, 
fps-one_wf, 
fps-single_wf, 
atom-valueall-type, 
fps-neg_wf, 
fps-add_wf, 
unit_wf2, 
bag-diff_wf, 
fps-mul_wf, 
fps-sub_wf, 
fps-elim-x_wf, 
fps-Pascal_wf, 
rng_zero_wf, 
atom-deq_wf, 
bag-deq-member_wf, 
ifthenelse_wf, 
rng_minus_wf, 
rng_plus_wf, 
single-bag_wf, 
bag-append_wf, 
rng_car_wf, 
equal_wf, 
bag_wf, 
all_wf, 
squash_wf, 
true_wf, 
abmonoid_ac_1_fps, 
subtype_rel_self, 
iff_weakening_equal, 
abmonoid_comm_fps, 
mon_assoc_fps, 
neg_thru_op_fps, 
mul_comm_fps, 
mul_one_fps, 
mul_over_plus_fps, 
mul_over_minus_fps, 
fps-mul-single-general, 
fps-mul-comm, 
bag-member_wf, 
assert_wf, 
not_functionality_wrt_uiff, 
assert-bnot, 
bool_subtype_base, 
subtype_base_sq, 
bool_cases_sqequal, 
eqff_to_assert, 
assert-bag-deq-member, 
eqtt_to_assert, 
bool_wf, 
not_wf, 
bag-diff-property, 
bag-deq-member-bag-diff, 
rng_minus_zero, 
rng_plus_ac_1, 
rng_plus_comm, 
rng_plus_zero, 
rng_plus_inv_assoc, 
bag-member-iff, 
and_wf, 
bag-append-comm, 
bag-append-assoc, 
bag-append-cancel, 
ringeq-iff-rsub-is-0, 
itermConstant_wf, 
itermMinus_wf, 
itermVar_wf, 
itermAdd_wf, 
ring_polynomial_null, 
int-to-ring_wf, 
ring_term_value_add_lemma, 
ring_term_value_var_lemma, 
ring_term_value_minus_lemma, 
ring_term_value_const_lemma, 
int-to-ring-zero, 
bag-member-single, 
bag-member-append, 
assert_of_bor, 
iff_weakening_uiff, 
iff_transitivity, 
equal-wf-base, 
or_wf, 
iff_functionality_wrt_iff, 
btrue_wf, 
bfalse_wf, 
bor_wf, 
reduce_wf, 
iff_imp_equal_bool, 
neg_assert_of_eq_atom, 
assert_of_eq_atom, 
eq_atom_wf, 
deq_member_cons_lemma, 
list_ind_nil_lemma, 
list_ind_cons_lemma, 
bag-diff-equal-inl, 
bag-append-assoc2, 
rng_plus_assoc, 
rng_plus_inv, 
fps-pascal_wf, 
fps-div_wf, 
rng_one_wf, 
valueall-type_wf, 
deq_wf, 
istype-universe, 
mul_ac_1_fps, 
fps-div-property, 
rng_times_wf, 
fps-coeff_wf, 
empty-bag_wf, 
reduce_nil_lemma, 
reduce_cons_lemma, 
map_nil_lemma, 
map_cons_lemma, 
rng_times_over_plus, 
rng_times_over_minus, 
rng_times_zero, 
rng_times_one, 
rng_minus_over_plus, 
fps-mul-assoc
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
sqequalRule, 
sqequalHypSubstitution, 
productElimination, 
thin, 
independent_pairEquality, 
lambdaEquality_alt, 
dependent_functionElimination, 
hypothesisEquality, 
axiomEquality, 
hypothesis, 
functionIsTypeImplies, 
inhabitedIsType, 
functionIsType, 
equalityIstype, 
extract_by_obid, 
isect_memberEquality_alt, 
isectElimination, 
isectIsTypeImplies, 
universeIsType, 
atomEquality, 
natural_numberEquality, 
universeEquality, 
unionEquality, 
independent_isectElimination, 
instantiate, 
cumulativity, 
unionElimination, 
independent_functionElimination, 
equalitySymmetry, 
equalityTransitivity, 
functionEquality, 
applyEquality, 
because_Cache, 
rename, 
setElimination, 
lambdaEquality, 
lambdaFormation, 
independent_pairFormation, 
imageElimination, 
imageMemberEquality, 
baseClosed, 
voidElimination, 
promote_hyp, 
dependent_pairFormation, 
equalityElimination, 
applyLambdaEquality, 
hyp_replacement, 
dependent_set_memberEquality, 
voidEquality, 
isect_memberEquality, 
approximateComputation, 
int_eqEquality, 
intEquality, 
inlFormation, 
inrFormation, 
closedConclusion, 
lambdaFormation_alt, 
productIsType, 
Error :memTop
Latex:
\mforall{}[r:CRng].  \mforall{}[x,y:Atom].  \mforall{}[f:PowerSeries(r)].
    fps-Pascal(r;x;y;f)
    \mLeftarrow{}{}\mRightarrow{}  f  =  (((((1-atom(y))*f(x:=0))+((1-atom(x))*f(y:=0)))-f(x:=0)(y:=0))*\mDelta{}(x,y)) 
    supposing  \mneg{}(x  =  y)
Date html generated:
2020_05_20-AM-09_07_14
Last ObjectModification:
2019_12_31-PM-09_47_22
Theory : power!series
Home
Index