Nuprl Lemma : fps-Pascal-iff

[r:CRng]. ∀[x,y:Atom]. ∀[f:PowerSeries(r)].
  fps-Pascal(r;x;y;f) ⇐⇒ (((((1-atom(y))*f(x:=0))+((1-atom(x))*f(y:=0)))-f(x:=0)(y:=0))*Δ(x,y)) ∈ PowerSeries(r) 
  supposing ¬(x y ∈ Atom)


Proof




Definitions occuring in Statement :  fps-pascal: Δ(x,y) fps-Pascal: fps-Pascal(r;x;y;f) fps-elim-x: f(x:=0) fps-mul: (f*g) fps-sub: (f-g) fps-add: (f+g) fps-atom: atom(x) fps-one: 1 power-series: PowerSeries(X;r) atom-deq: AtomDeq uimplies: supposing a uall: [x:A]. B[x] iff: ⇐⇒ Q not: ¬A atom: Atom equal: t ∈ T crng: CRng
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a fps-atom: atom(x) iff: ⇐⇒ Q and: P ∧ Q implies:  Q rev_implies:  Q fps-Pascal: fps-Pascal(r;x;y;f) all: x:A. B[x] not: ¬A false: False true: True subtype_rel: A ⊆B so_apply: x[s] infix_ap: y rng: Rng crng: CRng so_lambda: λ2x.t[x] prop: power-series: PowerSeries(X;r) fps-elim: fps-elim(x) fps-add: (f+g) fps-sub: (f-g) fps-neg: -(f) fps-coeff: f[b] fps-elim-x: f(x:=0) squash: T guard: {T} assert: b bnot: ¬bb sq_type: SQType(T) or: P ∨ Q exists: x:A. B[x] uiff: uiff(P;Q) it: unit: Unit bool: 𝔹 bfalse: ff btrue: tt ifthenelse: if then else fi  isl: isl(x) top: Top ringeq_int_terms: t1 ≡ t2 sq_or: a ↓∨ b nequal: a ≠ b ∈  bor: p ∨bq deq-member: x ∈b L so_apply: x[s1;s2;s3] so_lambda: so_lambda3 append: as bs bag-deq-member: bag-deq-member(eq;x;b) atom-deq: AtomDeq bag-append: as bs single-bag: {x} fps-pascal: Δ(x,y) empty-bag: {} fps-single: <c> fps-one: 1 bag-eq: bag-eq(eq;as;bs) bag-count: (#x in bs) bag-all: bag-all(x.p[x];bs) bag-null: bag-null(bs) null: null(as) nil: [] count: count(P;L) bag-map: bag-map(f;bs) bag-reduce: bag-reduce(x,y.f[x; y];zero;bs) lt_int: i <j band: p ∧b q
Lemmas referenced :  istype-void power-series_wf istype-atom crng_wf fps-one_wf fps-single_wf atom-valueall-type fps-neg_wf fps-add_wf unit_wf2 bag-diff_wf fps-mul_wf fps-sub_wf fps-elim-x_wf fps-Pascal_wf rng_zero_wf atom-deq_wf bag-deq-member_wf ifthenelse_wf rng_minus_wf rng_plus_wf single-bag_wf bag-append_wf rng_car_wf equal_wf bag_wf all_wf squash_wf true_wf abmonoid_ac_1_fps subtype_rel_self iff_weakening_equal abmonoid_comm_fps mon_assoc_fps neg_thru_op_fps mul_comm_fps mul_one_fps mul_over_plus_fps mul_over_minus_fps fps-mul-single-general fps-mul-comm bag-member_wf assert_wf not_functionality_wrt_uiff assert-bnot bool_subtype_base subtype_base_sq bool_cases_sqequal eqff_to_assert assert-bag-deq-member eqtt_to_assert bool_wf not_wf bag-diff-property bag-deq-member-bag-diff rng_minus_zero rng_plus_ac_1 rng_plus_comm rng_plus_zero rng_plus_inv_assoc bag-member-iff and_wf bag-append-comm bag-append-assoc bag-append-cancel ringeq-iff-rsub-is-0 itermConstant_wf itermMinus_wf itermVar_wf itermAdd_wf ring_polynomial_null int-to-ring_wf ring_term_value_add_lemma ring_term_value_var_lemma ring_term_value_minus_lemma ring_term_value_const_lemma int-to-ring-zero bag-member-single bag-member-append assert_of_bor iff_weakening_uiff iff_transitivity equal-wf-base or_wf iff_functionality_wrt_iff btrue_wf bfalse_wf bor_wf reduce_wf iff_imp_equal_bool neg_assert_of_eq_atom assert_of_eq_atom eq_atom_wf deq_member_cons_lemma list_ind_nil_lemma list_ind_cons_lemma bag-diff-equal-inl bag-append-assoc2 rng_plus_assoc rng_plus_inv fps-pascal_wf fps-div_wf rng_one_wf valueall-type_wf deq_wf istype-universe mul_ac_1_fps fps-div-property rng_times_wf fps-coeff_wf empty-bag_wf reduce_nil_lemma reduce_cons_lemma map_nil_lemma map_cons_lemma rng_times_over_plus rng_times_over_minus rng_times_zero rng_times_one rng_minus_over_plus fps-mul-assoc
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut sqequalRule sqequalHypSubstitution productElimination thin independent_pairEquality lambdaEquality_alt dependent_functionElimination hypothesisEquality axiomEquality hypothesis functionIsTypeImplies inhabitedIsType functionIsType equalityIstype extract_by_obid isect_memberEquality_alt isectElimination isectIsTypeImplies universeIsType atomEquality natural_numberEquality universeEquality unionEquality independent_isectElimination instantiate cumulativity unionElimination independent_functionElimination equalitySymmetry equalityTransitivity functionEquality applyEquality because_Cache rename setElimination lambdaEquality lambdaFormation independent_pairFormation imageElimination imageMemberEquality baseClosed voidElimination promote_hyp dependent_pairFormation equalityElimination applyLambdaEquality hyp_replacement dependent_set_memberEquality voidEquality isect_memberEquality approximateComputation int_eqEquality intEquality inlFormation inrFormation closedConclusion lambdaFormation_alt productIsType Error :memTop

Latex:
\mforall{}[r:CRng].  \mforall{}[x,y:Atom].  \mforall{}[f:PowerSeries(r)].
    fps-Pascal(r;x;y;f)
    \mLeftarrow{}{}\mRightarrow{}  f  =  (((((1-atom(y))*f(x:=0))+((1-atom(x))*f(y:=0)))-f(x:=0)(y:=0))*\mDelta{}(x,y)) 
    supposing  \mneg{}(x  =  y)



Date html generated: 2020_05_20-AM-09_07_14
Last ObjectModification: 2019_12_31-PM-09_47_22

Theory : power!series


Home Index