Nuprl Lemma : fps-mul-comm
∀[X:Type]. ∀[eq:EqDecider(X)].
  ∀[r:CRng]. ∀[f,g:PowerSeries(X;r)].  ((f*g) = (g*f) ∈ PowerSeries(X;r)) supposing valueall-type(X)
Proof
Definitions occuring in Statement : 
fps-mul: (f*g)
, 
power-series: PowerSeries(X;r)
, 
deq: EqDecider(T)
, 
valueall-type: valueall-type(T)
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
universe: Type
, 
equal: s = t ∈ T
, 
crng: CRng
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
power-series: PowerSeries(X;r)
, 
fps-mul: (f*g)
, 
fps-coeff: f[b]
, 
infix_ap: x f y
, 
crng: CRng
, 
comm: Comm(T;op)
, 
and: P ∧ Q
, 
cand: A c∧ B
, 
rng: Rng
, 
so_lambda: λ2x.t[x]
, 
pi1: fst(t)
, 
pi2: snd(t)
, 
so_apply: x[s]
, 
true: True
, 
squash: ↓T
, 
prop: ℙ
, 
subtype_rel: A ⊆r B
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
implies: P 
⇒ Q
, 
top: Top
, 
all: ∀x:A. B[x]
Lemmas referenced : 
rng_plus_comm, 
rng_all_properties, 
bag_wf, 
power-series_wf, 
valueall-type_wf, 
rng_car_wf, 
bag-summation_wf, 
rng_plus_wf, 
rng_zero_wf, 
infix_ap_wf, 
rng_times_wf, 
fps-coeff_wf, 
bag-partitions_wf, 
equal_wf, 
squash_wf, 
true_wf, 
bag-partitions-symmetry, 
iff_weakening_equal, 
bag-summation-map, 
bag-subtype-list, 
assoc_wf, 
comm_wf, 
crng_times_comm, 
pi1_wf_top, 
pi2_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
lambdaEquality, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
setElimination, 
rename, 
hypothesisEquality, 
hypothesis, 
because_Cache, 
productElimination, 
independent_pairFormation, 
cumulativity, 
isect_memberEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
productEquality, 
independent_isectElimination, 
natural_numberEquality, 
applyEquality, 
imageElimination, 
imageMemberEquality, 
baseClosed, 
universeEquality, 
independent_functionElimination, 
voidElimination, 
voidEquality, 
dependent_functionElimination, 
functionExtensionality, 
functionEquality, 
independent_pairEquality
Latex:
\mforall{}[X:Type].  \mforall{}[eq:EqDecider(X)].
    \mforall{}[r:CRng].  \mforall{}[f,g:PowerSeries(X;r)].    ((f*g)  =  (g*f))  supposing  valueall-type(X)
Date html generated:
2018_05_21-PM-09_54_58
Last ObjectModification:
2017_07_26-PM-06_32_35
Theory : power!series
Home
Index