Nuprl Lemma : fps-mul-comm

[X:Type]. ∀[eq:EqDecider(X)].
  ∀[r:CRng]. ∀[f,g:PowerSeries(X;r)].  ((f*g) (g*f) ∈ PowerSeries(X;r)) supposing valueall-type(X)


Proof




Definitions occuring in Statement :  fps-mul: (f*g) power-series: PowerSeries(X;r) deq: EqDecider(T) valueall-type: valueall-type(T) uimplies: supposing a uall: [x:A]. B[x] universe: Type equal: t ∈ T crng: CRng
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a power-series: PowerSeries(X;r) fps-mul: (f*g) fps-coeff: f[b] infix_ap: y crng: CRng comm: Comm(T;op) and: P ∧ Q cand: c∧ B rng: Rng so_lambda: λ2x.t[x] pi1: fst(t) pi2: snd(t) so_apply: x[s] true: True squash: T prop: subtype_rel: A ⊆B guard: {T} iff: ⇐⇒ Q rev_implies:  Q implies:  Q top: Top all: x:A. B[x]
Lemmas referenced :  rng_plus_comm rng_all_properties bag_wf power-series_wf valueall-type_wf rng_car_wf bag-summation_wf rng_plus_wf rng_zero_wf infix_ap_wf rng_times_wf fps-coeff_wf bag-partitions_wf equal_wf squash_wf true_wf bag-partitions-symmetry iff_weakening_equal bag-summation-map bag-subtype-list assoc_wf comm_wf crng_times_comm pi1_wf_top pi2_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule lambdaEquality extract_by_obid sqequalHypSubstitution isectElimination thin setElimination rename hypothesisEquality hypothesis because_Cache productElimination independent_pairFormation cumulativity isect_memberEquality axiomEquality equalityTransitivity equalitySymmetry productEquality independent_isectElimination natural_numberEquality applyEquality imageElimination imageMemberEquality baseClosed universeEquality independent_functionElimination voidElimination voidEquality dependent_functionElimination functionExtensionality functionEquality independent_pairEquality

Latex:
\mforall{}[X:Type].  \mforall{}[eq:EqDecider(X)].
    \mforall{}[r:CRng].  \mforall{}[f,g:PowerSeries(X;r)].    ((f*g)  =  (g*f))  supposing  valueall-type(X)



Date html generated: 2018_05_21-PM-09_54_58
Last ObjectModification: 2017_07_26-PM-06_32_35

Theory : power!series


Home Index