Nuprl Lemma : bag-diff-equal-inl

[T:Type]
  ∀eq:EqDecider(T). ∀as,bs:bag(T).
    ∀[cs:bag(T)]. uiff(bag-diff(eq;bs;as) (inl cs) ∈ (bag(T)?);bs (as cs) ∈ bag(T))


Proof




Definitions occuring in Statement :  bag-diff: bag-diff(eq;bs;as) bag-append: as bs bag: bag(T) deq: EqDecider(T) uiff: uiff(P;Q) uall: [x:A]. B[x] all: x:A. B[x] unit: Unit inl: inl x union: left right universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] implies:  Q uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a outl: outl(x) prop: isl: isl(x) assert: b ifthenelse: if then else fi  btrue: tt true: True not: ¬A false: False so_lambda: λ2x.t[x] so_apply: x[s]
Lemmas referenced :  bag-diff-property bag-diff_wf bag_wf unit_wf2 and_wf equal_wf outl_wf assert_wf isl_wf bag-append_wf btrue_wf bfalse_wf btrue_neq_bfalse all_wf not_wf deq_wf bag-append-cancel
Rules used in proof :  cut introduction extract_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation hypothesis sqequalHypSubstitution isectElimination thin hypothesisEquality lambdaFormation dependent_functionElimination cumulativity unionEquality unionElimination sqequalRule independent_pairFormation equalitySymmetry dependent_set_memberEquality equalityTransitivity applyLambdaEquality setElimination rename productElimination independent_isectElimination promote_hyp hyp_replacement natural_numberEquality inlEquality independent_pairEquality isect_memberEquality axiomEquality because_Cache independent_functionElimination voidElimination inrEquality lambdaEquality universeEquality

Latex:
\mforall{}[T:Type]
    \mforall{}eq:EqDecider(T).  \mforall{}as,bs:bag(T).    \mforall{}[cs:bag(T)].  uiff(bag-diff(eq;bs;as)  =  (inl  cs);bs  =  (as  +  cs))



Date html generated: 2018_05_21-PM-09_49_17
Last ObjectModification: 2017_07_26-PM-06_30_58

Theory : bags_2


Home Index