Nuprl Lemma : bag-diff-equal-inl
∀[T:Type]
  ∀eq:EqDecider(T). ∀as,bs:bag(T).
    ∀[cs:bag(T)]. uiff(bag-diff(eq;bs;as) = (inl cs) ∈ (bag(T)?);bs = (as + cs) ∈ bag(T))
Proof
Definitions occuring in Statement : 
bag-diff: bag-diff(eq;bs;as), 
bag-append: as + bs, 
bag: bag(T), 
deq: EqDecider(T), 
uiff: uiff(P;Q), 
uall: ∀[x:A]. B[x], 
all: ∀x:A. B[x], 
unit: Unit, 
inl: inl x, 
union: left + right, 
universe: Type, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
uiff: uiff(P;Q), 
and: P ∧ Q, 
uimplies: b supposing a, 
outl: outl(x), 
prop: ℙ, 
isl: isl(x), 
assert: ↑b, 
ifthenelse: if b then t else f fi , 
btrue: tt, 
true: True, 
not: ¬A, 
false: False, 
so_lambda: λ2x.t[x], 
so_apply: x[s]
Lemmas referenced : 
bag-diff-property, 
bag-diff_wf, 
bag_wf, 
unit_wf2, 
and_wf, 
equal_wf, 
outl_wf, 
assert_wf, 
isl_wf, 
bag-append_wf, 
btrue_wf, 
bfalse_wf, 
btrue_neq_bfalse, 
all_wf, 
not_wf, 
deq_wf, 
bag-append-cancel
Rules used in proof : 
cut, 
introduction, 
extract_by_obid, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
hypothesis, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
lambdaFormation, 
dependent_functionElimination, 
cumulativity, 
unionEquality, 
unionElimination, 
sqequalRule, 
independent_pairFormation, 
equalitySymmetry, 
dependent_set_memberEquality, 
equalityTransitivity, 
applyLambdaEquality, 
setElimination, 
rename, 
productElimination, 
independent_isectElimination, 
promote_hyp, 
hyp_replacement, 
natural_numberEquality, 
inlEquality, 
independent_pairEquality, 
isect_memberEquality, 
axiomEquality, 
because_Cache, 
independent_functionElimination, 
voidElimination, 
inrEquality, 
lambdaEquality, 
universeEquality
Latex:
\mforall{}[T:Type]
    \mforall{}eq:EqDecider(T).  \mforall{}as,bs:bag(T).    \mforall{}[cs:bag(T)].  uiff(bag-diff(eq;bs;as)  =  (inl  cs);bs  =  (as  +  cs))
Date html generated:
2018_05_21-PM-09_49_17
Last ObjectModification:
2017_07_26-PM-06_30_58
Theory : bags_2
Home
Index