Nuprl Lemma : bag-diff-property
∀[T:Type]
  ∀eq:EqDecider(T). ∀as,bs:bag(T).
    case bag-diff(eq;bs;as) of inl(cs) => bs = (as + cs) ∈ bag(T) | inr(z) => ∀cs:bag(T). (¬(bs = (as + cs) ∈ bag(T)))
Proof
Definitions occuring in Statement : 
bag-diff: bag-diff(eq;bs;as)
, 
bag-append: as + bs
, 
bag: bag(T)
, 
deq: EqDecider(T)
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
not: ¬A
, 
decide: case b of inl(x) => s[x] | inr(y) => t[y]
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
squash: ↓T
, 
exists: ∃x:A. B[x]
, 
prop: ℙ
, 
implies: P 
⇒ Q
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
bag-diff: bag-diff(eq;bs;as)
, 
bag-accum: bag-accum(v,x.f[v; x];init;bs)
, 
guard: {T}
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
and: P ∧ Q
, 
uimplies: b supposing a
, 
not: ¬A
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
false: False
, 
top: Top
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
subtype_rel: A ⊆r B
, 
sq_type: SQType(T)
, 
nat: ℕ
, 
ge: i ≥ j 
, 
le: A ≤ B
, 
less_than: a < b
, 
list_accum: list_accum, 
nil: []
, 
it: ⋅
, 
cons: [a / b]
, 
assert: ↑b
, 
ifthenelse: if b then t else f fi 
, 
bfalse: ff
, 
iff: P 
⇐⇒ Q
, 
uiff: uiff(P;Q)
, 
rev_implies: P 
⇐ Q
, 
int_iseg: {i...j}
, 
cand: A c∧ B
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
bag-append: as + bs
, 
append: as @ bs
, 
so_lambda: so_lambda(x,y,z.t[x; y; z])
, 
so_apply: x[s1;s2;s3]
, 
single-bag: {x}
, 
true: True
, 
sq_or: a ↓∨ b
, 
sq_stable: SqStable(P)
Lemmas referenced : 
bag_wf, 
deq_wf, 
bag_to_squash_list, 
squash_wf, 
bag-diff_wf, 
unit_wf2, 
equal_wf, 
bag-append_wf, 
all_wf, 
not_wf, 
int_seg_properties, 
full-omega-unsat, 
intformand_wf, 
intformless_wf, 
itermVar_wf, 
itermConstant_wf, 
intformle_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_less_lemma, 
int_term_value_var_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_wf, 
int_seg_wf, 
decidable__equal_int, 
subtract_wf, 
subtype_base_sq, 
set_subtype_base, 
int_subtype_base, 
intformnot_wf, 
intformeq_wf, 
itermSubtract_wf, 
int_formula_prop_not_lemma, 
int_formula_prop_eq_lemma, 
int_term_value_subtract_lemma, 
decidable__le, 
decidable__lt, 
lelt_wf, 
subtype_rel_self, 
le_wf, 
length_wf, 
non_neg_length, 
nat_properties, 
less_than_wf, 
decidable__assert, 
null_wf3, 
subtype_rel_list, 
top_wf, 
list-cases, 
product_subtype_list, 
null_cons_lemma, 
last-lemma-sq, 
pos_length, 
iff_transitivity, 
equal-wf-T-base, 
list_wf, 
assert_wf, 
bnot_wf, 
assert_of_null, 
iff_weakening_uiff, 
assert_of_bnot, 
firstn_wf, 
length_firstn, 
list_accum_wf, 
bag-remove1_wf, 
list-subtype-bag, 
set_wf, 
primrec-wf2, 
nat_wf, 
itermAdd_wf, 
int_term_value_add_lemma, 
length_wf_nat, 
list_ind_nil_lemma, 
list_accum_append, 
list_accum_cons_lemma, 
list_accum_nil_lemma, 
bag-remove1-property, 
last_wf, 
append_wf, 
cons_wf, 
nil_wf, 
true_wf, 
bag-append-assoc, 
iff_weakening_equal, 
single-bag_wf, 
bag-append-cancel, 
bag-member_wf, 
bag-member-append, 
bag-member-single, 
bag-append-comm-assoc, 
sq_stable__equal, 
sq_stable__all, 
sq_stable__not
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
universeEquality, 
imageElimination, 
productElimination, 
promote_hyp, 
rename, 
hyp_replacement, 
equalitySymmetry, 
applyLambdaEquality, 
unionEquality, 
equalityTransitivity, 
unionElimination, 
sqequalRule, 
lambdaEquality, 
dependent_functionElimination, 
independent_functionElimination, 
imageMemberEquality, 
baseClosed, 
natural_numberEquality, 
because_Cache, 
setElimination, 
independent_isectElimination, 
approximateComputation, 
dependent_pairFormation, 
int_eqEquality, 
intEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
independent_pairFormation, 
addLevel, 
applyEquality, 
instantiate, 
dependent_set_memberEquality, 
levelHypothesis, 
hypothesis_subsumption, 
impliesFunctionality, 
productEquality, 
functionEquality, 
inlEquality, 
inrEquality, 
addEquality, 
cumulativity, 
equalityUniverse, 
inlFormation
Latex:
\mforall{}[T:Type]
    \mforall{}eq:EqDecider(T).  \mforall{}as,bs:bag(T).
        case  bag-diff(eq;bs;as)  of  inl(cs)  =>  bs  =  (as  +  cs)  |  inr(z)  =>  \mforall{}cs:bag(T).  (\mneg{}(bs  =  (as  +  cs)))
Date html generated:
2019_10_16-AM-11_31_55
Last ObjectModification:
2018_08_21-PM-01_59_55
Theory : bags_2
Home
Index