Nuprl Lemma : bag-append-cancel
∀[T:Type]. ∀[as,bs,cs:bag(T)].  uiff((as + bs) = (as + cs) ∈ bag(T);bs = cs ∈ bag(T))
Proof
Definitions occuring in Statement : 
bag-append: as + bs
, 
bag: bag(T)
, 
uiff: uiff(P;Q)
, 
uall: ∀[x:A]. B[x]
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
uimplies: b supposing a
, 
squash: ↓T
, 
exists: ∃x:A. B[x]
, 
prop: ℙ
, 
subtype_rel: A ⊆r B
, 
bag-append: as + bs
, 
so_lambda: λ2x.t[x]
, 
implies: P 
⇒ Q
, 
so_apply: x[s]
, 
append: as @ bs
, 
all: ∀x:A. B[x]
, 
so_lambda: so_lambda(x,y,z.t[x; y; z])
, 
top: Top
, 
so_apply: x[s1;s2;s3]
, 
bag: bag(T)
, 
quotient: x,y:A//B[x; y]
, 
cand: A c∧ B
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
Lemmas referenced : 
bag_to_squash_list, 
equal_wf, 
bag_wf, 
bag-append_wf, 
list-subtype-bag, 
and_wf, 
list_induction, 
append_wf, 
list_wf, 
list_ind_nil_lemma, 
nil_wf, 
cons_wf, 
list_ind_cons_lemma, 
cons_cancel_wrt_permutation, 
quotient-member-eq, 
permutation_wf, 
permutation-equiv, 
member_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
independent_pairFormation, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
imageElimination, 
productElimination, 
promote_hyp, 
hypothesis, 
equalitySymmetry, 
hyp_replacement, 
Error :applyLambdaEquality, 
cumulativity, 
sqequalRule, 
rename, 
applyEquality, 
because_Cache, 
independent_isectElimination, 
lambdaEquality, 
equalityTransitivity, 
dependent_set_memberEquality, 
setElimination, 
setEquality, 
independent_pairEquality, 
isect_memberEquality, 
axiomEquality, 
functionEquality, 
independent_functionElimination, 
lambdaFormation, 
dependent_functionElimination, 
voidElimination, 
voidEquality, 
pertypeElimination, 
productEquality
Latex:
\mforall{}[T:Type].  \mforall{}[as,bs,cs:bag(T)].    uiff((as  +  bs)  =  (as  +  cs);bs  =  cs)
Date html generated:
2016_10_25-AM-10_21_57
Last ObjectModification:
2016_07_12-AM-06_38_54
Theory : bags
Home
Index