Nuprl Lemma : bag-append-comm-assoc

[T:Type]. ∀[as,bs,cs:bag(T)].  ((as bs cs) ((as cs) bs) ∈ bag(T))


Proof




Definitions occuring in Statement :  bag-append: as bs bag: bag(T) uall: [x:A]. B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T top: Top prop:
Lemmas referenced :  bag-append-comm bag-append-assoc bag-append_wf equal_wf bag_wf
Rules used in proof :  cut introduction extract_by_obid sqequalHypSubstitution sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isectElimination thin hypothesisEquality hypothesis sqequalRule isect_memberEquality voidElimination voidEquality cumulativity equalityTransitivity equalitySymmetry hyp_replacement Error :applyLambdaEquality,  because_Cache universeEquality isect_memberFormation axiomEquality

Latex:
\mforall{}[T:Type].  \mforall{}[as,bs,cs:bag(T)].    ((as  +  bs  +  cs)  =  ((as  +  cs)  +  bs))



Date html generated: 2016_10_25-AM-10_21_55
Last ObjectModification: 2016_07_12-AM-06_38_42

Theory : bags


Home Index