Nuprl Lemma : bag-append-comm-assoc
∀[T:Type]. ∀[as,bs,cs:bag(T)].  ((as + bs + cs) = ((as + cs) + bs) ∈ bag(T))
Proof
Definitions occuring in Statement : 
bag-append: as + bs
, 
bag: bag(T)
, 
uall: ∀[x:A]. B[x]
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
top: Top
, 
prop: ℙ
Lemmas referenced : 
bag-append-comm, 
bag-append-assoc, 
bag-append_wf, 
equal_wf, 
bag_wf
Rules used in proof : 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
sqequalRule, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
cumulativity, 
equalityTransitivity, 
equalitySymmetry, 
hyp_replacement, 
Error :applyLambdaEquality, 
because_Cache, 
universeEquality, 
isect_memberFormation, 
axiomEquality
Latex:
\mforall{}[T:Type].  \mforall{}[as,bs,cs:bag(T)].    ((as  +  bs  +  cs)  =  ((as  +  cs)  +  bs))
Date html generated:
2016_10_25-AM-10_21_55
Last ObjectModification:
2016_07_12-AM-06_38_42
Theory : bags
Home
Index