Nuprl Lemma : bag-diff_wf
∀[T:Type]. ∀[eq:EqDecider(T)]. ∀[bs,as:bag(T)].  (bag-diff(eq;bs;as) ∈ bag(T)?)
Proof
Definitions occuring in Statement : 
bag-diff: bag-diff(eq;bs;as)
, 
bag: bag(T)
, 
deq: EqDecider(T)
, 
uall: ∀[x:A]. B[x]
, 
unit: Unit
, 
member: t ∈ T
, 
union: left + right
, 
universe: Type
Definitions unfolded in proof : 
so_apply: x[s]
, 
subtype_rel: A ⊆r B
, 
so_lambda: λ2x.t[x]
, 
top: Top
, 
all: ∀x:A. B[x]
, 
uimplies: b supposing a
, 
so_apply: x[s1;s2]
, 
so_lambda: λ2x y.t[x; y]
, 
bag-diff: bag-diff(eq;bs;as)
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
implies: P 
⇒ Q
, 
or: P ∨ Q
, 
exists: ∃x:A. B[x]
, 
and: P ∧ Q
, 
sq_type: SQType(T)
, 
guard: {T}
, 
true: True
, 
false: False
, 
not: ¬A
, 
prop: ℙ
, 
uiff: uiff(P;Q)
, 
rev_uimplies: rev_uimplies(P;Q)
, 
sq_or: a ↓∨ b
, 
squash: ↓T
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
Lemmas referenced : 
istype-universe, 
deq_wf, 
istype-top, 
subtype_rel_union, 
istype-void, 
top_wf, 
decide_wf, 
bag-remove1_wf, 
unit_wf2, 
bag_wf, 
bag-accum_wf, 
bag-remove1-property, 
subtype_base_sq, 
int_subtype_base, 
equal-unit, 
bag-append_wf, 
single-bag_wf, 
bag-member_wf, 
bag-remove1-equal, 
not_wf, 
equal_wf, 
squash_wf, 
true_wf, 
bag-remove1-non-member, 
bag-member-append, 
subtype_rel_self, 
iff_weakening_equal, 
equal-wf-T-base, 
unit_subtype_base, 
it_wf, 
equal-wf-base-T
Rules used in proof : 
universeEquality, 
instantiate, 
isectIsTypeImplies, 
equalitySymmetry, 
equalityTransitivity, 
axiomEquality, 
applyEquality, 
inhabitedIsType, 
voidElimination, 
isect_memberEquality_alt, 
lambdaFormation_alt, 
independent_isectElimination, 
unionIsType, 
inrEquality_alt, 
unionElimination, 
lambdaEquality_alt, 
universeIsType, 
inlEquality_alt, 
hypothesis, 
because_Cache, 
unionEquality, 
hypothesisEquality, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
sqequalRule, 
cut, 
introduction, 
isect_memberFormation_alt, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution, 
independent_functionElimination, 
equalityIsType1, 
dependent_functionElimination, 
productElimination, 
applyLambdaEquality, 
promote_hyp, 
natural_numberEquality, 
cumulativity, 
intEquality, 
productIsType, 
equalityIstype, 
functionIsType, 
baseClosed, 
sqequalBase, 
inlFormation_alt, 
dependent_set_memberEquality_alt, 
independent_pairFormation, 
setElimination, 
rename, 
imageMemberEquality, 
hyp_replacement, 
imageElimination, 
inrFormation_alt, 
baseApply, 
closedConclusion
Latex:
\mforall{}[T:Type].  \mforall{}[eq:EqDecider(T)].  \mforall{}[bs,as:bag(T)].    (bag-diff(eq;bs;as)  \mmember{}  bag(T)?)
Date html generated:
2020_05_20-AM-09_04_18
Last ObjectModification:
2020_01_25-AM-10_05_01
Theory : bags_2
Home
Index