Nuprl Lemma : bag-diff_wf

[T:Type]. ∀[eq:EqDecider(T)]. ∀[bs,as:bag(T)].  (bag-diff(eq;bs;as) ∈ bag(T)?)


Proof




Definitions occuring in Statement :  bag-diff: bag-diff(eq;bs;as) bag: bag(T) deq: EqDecider(T) uall: [x:A]. B[x] unit: Unit member: t ∈ T union: left right universe: Type
Definitions unfolded in proof :  so_apply: x[s] subtype_rel: A ⊆B so_lambda: λ2x.t[x] top: Top all: x:A. B[x] uimplies: supposing a so_apply: x[s1;s2] so_lambda: λ2y.t[x; y] bag-diff: bag-diff(eq;bs;as) member: t ∈ T uall: [x:A]. B[x] implies:  Q or: P ∨ Q exists: x:A. B[x] and: P ∧ Q sq_type: SQType(T) guard: {T} true: True false: False not: ¬A prop: uiff: uiff(P;Q) rev_uimplies: rev_uimplies(P;Q) sq_or: a ↓∨ b squash: T iff: ⇐⇒ Q rev_implies:  Q
Lemmas referenced :  istype-universe deq_wf istype-top subtype_rel_union istype-void top_wf decide_wf bag-remove1_wf unit_wf2 bag_wf bag-accum_wf bag-remove1-property subtype_base_sq int_subtype_base equal-unit bag-append_wf single-bag_wf bag-member_wf bag-remove1-equal not_wf equal_wf squash_wf true_wf bag-remove1-non-member bag-member-append subtype_rel_self iff_weakening_equal equal-wf-T-base unit_subtype_base it_wf equal-wf-base-T
Rules used in proof :  universeEquality instantiate isectIsTypeImplies equalitySymmetry equalityTransitivity axiomEquality applyEquality inhabitedIsType voidElimination isect_memberEquality_alt lambdaFormation_alt independent_isectElimination unionIsType inrEquality_alt unionElimination lambdaEquality_alt universeIsType inlEquality_alt hypothesis because_Cache unionEquality hypothesisEquality thin isectElimination sqequalHypSubstitution extract_by_obid sqequalRule cut introduction isect_memberFormation_alt sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution independent_functionElimination equalityIsType1 dependent_functionElimination productElimination applyLambdaEquality promote_hyp natural_numberEquality cumulativity intEquality productIsType equalityIstype functionIsType baseClosed sqequalBase inlFormation_alt dependent_set_memberEquality_alt independent_pairFormation setElimination rename imageMemberEquality hyp_replacement imageElimination inrFormation_alt baseApply closedConclusion

Latex:
\mforall{}[T:Type].  \mforall{}[eq:EqDecider(T)].  \mforall{}[bs,as:bag(T)].    (bag-diff(eq;bs;as)  \mmember{}  bag(T)?)



Date html generated: 2020_05_20-AM-09_04_18
Last ObjectModification: 2020_01_25-AM-10_05_01

Theory : bags_2


Home Index