Nuprl Lemma : bag-remove1-non-member
∀[T:Type]. ∀[eq:EqDecider(T)]. ∀[x:T]. ∀[bs:bag(T)].  bag-remove1(eq;bs;x) = (inr ⋅ ) ∈ (bag(T)?) supposing ¬x ↓∈ bs
Proof
Definitions occuring in Statement : 
bag-remove1: bag-remove1(eq;bs;a)
, 
bag-member: x ↓∈ bs
, 
bag: bag(T)
, 
deq: EqDecider(T)
, 
it: ⋅
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
not: ¬A
, 
unit: Unit
, 
inr: inr x 
, 
union: left + right
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
all: ∀x:A. B[x]
, 
or: P ∨ Q
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
exists: ∃x:A. B[x]
, 
and: P ∧ Q
, 
false: False
, 
prop: ℙ
, 
squash: ↓T
, 
true: True
, 
subtype_rel: A ⊆r B
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
sq_or: a ↓∨ b
, 
uiff: uiff(P;Q)
Lemmas referenced : 
bag-remove1-property, 
bag-member_wf, 
istype-void, 
bag_wf, 
istype-universe, 
deq_wf, 
squash_wf, 
true_wf, 
subtype_rel_self, 
iff_weakening_equal, 
bag-member-append, 
single-bag_wf, 
bag-member-single
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
dependent_functionElimination, 
unionElimination, 
independent_functionElimination, 
productElimination, 
voidElimination, 
hypothesis, 
sqequalRule, 
functionIsType, 
universeIsType, 
isect_memberEquality_alt, 
axiomEquality, 
because_Cache, 
equalityTransitivity, 
equalitySymmetry, 
universeEquality, 
applyEquality, 
lambdaEquality_alt, 
imageElimination, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
instantiate, 
independent_isectElimination, 
inlFormation_alt
Latex:
\mforall{}[T:Type].  \mforall{}[eq:EqDecider(T)].  \mforall{}[x:T].  \mforall{}[bs:bag(T)].
    bag-remove1(eq;bs;x)  =  (inr  \mcdot{}  )  supposing  \mneg{}x  \mdownarrow{}\mmember{}  bs
Date html generated:
2019_10_16-AM-11_30_49
Last ObjectModification:
2018_10_11-AM-09_35_53
Theory : bags_2
Home
Index