Nuprl Lemma : bag-remove1-non-member

[T:Type]. ∀[eq:EqDecider(T)]. ∀[x:T]. ∀[bs:bag(T)].  bag-remove1(eq;bs;x) (inr ⋅ ) ∈ (bag(T)?) supposing ¬x ↓∈ bs


Proof




Definitions occuring in Statement :  bag-remove1: bag-remove1(eq;bs;a) bag-member: x ↓∈ bs bag: bag(T) deq: EqDecider(T) it: uimplies: supposing a uall: [x:A]. B[x] not: ¬A unit: Unit inr: inr  union: left right universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a all: x:A. B[x] or: P ∨ Q not: ¬A implies:  Q exists: x:A. B[x] and: P ∧ Q false: False prop: squash: T true: True subtype_rel: A ⊆B guard: {T} iff: ⇐⇒ Q rev_implies:  Q sq_or: a ↓∨ b uiff: uiff(P;Q)
Lemmas referenced :  bag-remove1-property bag-member_wf istype-void bag_wf istype-universe deq_wf squash_wf true_wf subtype_rel_self iff_weakening_equal bag-member-append single-bag_wf bag-member-single
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality dependent_functionElimination unionElimination independent_functionElimination productElimination voidElimination hypothesis sqequalRule functionIsType universeIsType isect_memberEquality_alt axiomEquality because_Cache equalityTransitivity equalitySymmetry universeEquality applyEquality lambdaEquality_alt imageElimination natural_numberEquality imageMemberEquality baseClosed instantiate independent_isectElimination inlFormation_alt

Latex:
\mforall{}[T:Type].  \mforall{}[eq:EqDecider(T)].  \mforall{}[x:T].  \mforall{}[bs:bag(T)].
    bag-remove1(eq;bs;x)  =  (inr  \mcdot{}  )  supposing  \mneg{}x  \mdownarrow{}\mmember{}  bs



Date html generated: 2019_10_16-AM-11_30_49
Last ObjectModification: 2018_10_11-AM-09_35_53

Theory : bags_2


Home Index