Nuprl Lemma : bag-remove1-property
∀[T:Type]
  ∀eq:EqDecider(T). ∀x:T. ∀bs:bag(T).
    ((∃as:bag(T). ((bs = ({x} + as) ∈ bag(T)) ∧ (bag-remove1(eq;bs;x) = (inl as) ∈ (bag(T)?))))
    ∨ ((¬x ↓∈ bs) ∧ (bag-remove1(eq;bs;x) = (inr ⋅ ) ∈ (bag(T)?))))
Proof
Definitions occuring in Statement : 
bag-remove1: bag-remove1(eq;bs;a)
, 
bag-member: x ↓∈ bs
, 
bag-append: as + bs
, 
single-bag: {x}
, 
bag: bag(T)
, 
deq: EqDecider(T)
, 
it: ⋅
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
not: ¬A
, 
or: P ∨ Q
, 
and: P ∧ Q
, 
unit: Unit
, 
inr: inr x 
, 
inl: inl x
, 
union: left + right
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
implies: P 
⇒ Q
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
and: P ∧ Q
, 
not: ¬A
, 
false: False
, 
squash: ↓T
, 
exists: ∃x:A. B[x]
, 
prop: ℙ
, 
isl: isl(x)
, 
outl: outl(x)
, 
uimplies: b supposing a
, 
subtype_rel: A ⊆r B
, 
assert: ↑b
, 
ifthenelse: if b then t else f fi 
, 
btrue: tt
, 
cand: A c∧ B
, 
true: True
, 
iff: P 
⇐⇒ Q
, 
bag-append: as + bs
, 
nat: ℕ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
guard: {T}
, 
rev_implies: P 
⇐ Q
, 
single-bag: {x}
, 
top: Top
, 
sq_stable: SqStable(P)
, 
bfalse: ff
, 
bag-member: x ↓∈ bs
, 
respects-equality: respects-equality(S;T)
Lemmas referenced : 
decidable__bag-member, 
decidable-equal-deq, 
bag_wf, 
deq_wf, 
istype-universe, 
istype-void, 
bag_to_squash_list, 
bag-member_wf, 
decidable_wf, 
squash_wf, 
assert_wf, 
bag-remove1_wf, 
btrue_wf, 
bfalse_wf, 
equal_wf, 
bag-append_wf, 
single-bag_wf, 
assert_elim, 
unit_subtype_base, 
btrue_neq_bfalse, 
bag-remove1-property1, 
isl_wf, 
list_wf, 
unit_wf2, 
list-subtype-bag, 
outl_wf, 
bag-member-list, 
length_wf_nat, 
istype-nat, 
set_subtype_base, 
le_wf, 
istype-int, 
int_subtype_base, 
true_wf, 
bag-append-comm, 
cons_wf, 
nil_wf, 
reverse_wf, 
subtype_rel_self, 
iff_weakening_equal, 
bag-append-assoc2, 
reverse-bag, 
subtype_rel_set, 
equal-wf-base, 
bag_qinc, 
sq_stable__and, 
sq_stable__assert, 
sq_stable__equal, 
istype-assert, 
not_wf, 
equal-wf-T-base, 
subtype_rel_union, 
equal_functionality_wrt_subtype_rel2, 
member_append, 
append_wf, 
cons_member, 
l_member_wf, 
subtype-respects-equality
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
lambdaFormation_alt, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
independent_functionElimination, 
because_Cache, 
hypothesis, 
dependent_functionElimination, 
universeIsType, 
instantiate, 
universeEquality, 
unionElimination, 
inlFormation_alt, 
sqequalRule, 
productIsType, 
functionIsType, 
inhabitedIsType, 
voidElimination, 
imageElimination, 
productElimination, 
promote_hyp, 
equalitySymmetry, 
hyp_replacement, 
applyLambdaEquality, 
functionEquality, 
rename, 
imageMemberEquality, 
baseClosed, 
productEquality, 
equalityIstype, 
equalityTransitivity, 
independent_isectElimination, 
dependent_set_memberEquality_alt, 
independent_pairFormation, 
baseApply, 
closedConclusion, 
applyEquality, 
sqequalBase, 
setElimination, 
natural_numberEquality, 
lambdaEquality_alt, 
intEquality, 
isect_memberEquality_alt, 
axiomEquality, 
functionIsTypeImplies, 
dependent_pairFormation_alt, 
inlEquality_alt, 
inrFormation_alt, 
unionIsType, 
unionEquality
Latex:
\mforall{}[T:Type]
    \mforall{}eq:EqDecider(T).  \mforall{}x:T.  \mforall{}bs:bag(T).
        ((\mexists{}as:bag(T).  ((bs  =  (\{x\}  +  as))  \mwedge{}  (bag-remove1(eq;bs;x)  =  (inl  as))))
        \mvee{}  ((\mneg{}x  \mdownarrow{}\mmember{}  bs)  \mwedge{}  (bag-remove1(eq;bs;x)  =  (inr  \mcdot{}  ))))
Date html generated:
2019_10_16-AM-11_30_46
Last ObjectModification:
2018_11_30-PM-00_20_42
Theory : bags_2
Home
Index