Nuprl Lemma : bag_qinc
∀A:Type. ((A List) ⊆r bag(A))
Proof
Definitions occuring in Statement :
bag: bag(T)
,
list: T List
,
subtype_rel: A ⊆r B
,
all: ∀x:A. B[x]
,
universe: Type
Definitions unfolded in proof :
bag: bag(T)
,
all: ∀x:A. B[x]
,
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
so_lambda: λ2x y.t[x; y]
,
so_apply: x[s1;s2]
,
uimplies: b supposing a
Lemmas referenced :
subtype_quotient,
list_wf,
permutation_wf,
permutation-equiv
Rules used in proof :
sqequalSubstitution,
sqequalRule,
sqequalReflexivity,
sqequalTransitivity,
computationStep,
lambdaFormation,
cut,
introduction,
extract_by_obid,
sqequalHypSubstitution,
isectElimination,
thin,
hypothesisEquality,
hypothesis,
lambdaEquality,
independent_isectElimination,
universeEquality
Latex:
\mforall{}A:Type. ((A List) \msubseteq{}r bag(A))
Date html generated:
2019_10_15-AM-11_35_58
Last ObjectModification:
2018_09_18-PM-10_17_55
Theory : general
Home
Index