Nuprl Lemma : fps-mul_wf

[X:Type]
  ∀[eq:EqDecider(X)]. ∀[r:CRng]. ∀[f,g:PowerSeries(X;r)].  ((f*g) ∈ PowerSeries(X;r)) supposing valueall-type(X)


Proof




Definitions occuring in Statement :  fps-mul: (f*g) power-series: PowerSeries(X;r) deq: EqDecider(T) valueall-type: valueall-type(T) uimplies: supposing a uall: [x:A]. B[x] member: t ∈ T universe: Type crng: CRng
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a crng: CRng rng: Rng prop: and: P ∧ Q fps-mul: (f*g) so_lambda: λ2x.t[x] pi1: fst(t) pi2: snd(t) so_apply: x[s] cand: c∧ B subtype_rel: A ⊆B
Lemmas referenced :  crng_properties rng_properties rng_all_properties ring_p_wf rng_car_wf rng_plus_wf rng_zero_wf rng_minus_wf rng_times_wf rng_one_wf rng_plus_comm rng_plus_comm2 power-series_wf crng_wf deq_wf valueall-type_wf bag-summation_wf bag_wf fps-coeff_wf bag-partitions_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis setElimination rename dependent_set_memberEquality productElimination sqequalRule axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality because_Cache universeEquality lambdaEquality productEquality cumulativity applyEquality independent_isectElimination independent_pairFormation

Latex:
\mforall{}[X:Type]
    \mforall{}[eq:EqDecider(X)].  \mforall{}[r:CRng].  \mforall{}[f,g:PowerSeries(X;r)].    ((f*g)  \mmember{}  PowerSeries(X;r)) 
    supposing  valueall-type(X)



Date html generated: 2016_05_15-PM-09_47_39
Last ObjectModification: 2015_12_27-PM-04_40_53

Theory : power!series


Home Index