Nuprl Lemma : fps-mul_wf
∀[X:Type]
  ∀[eq:EqDecider(X)]. ∀[r:CRng]. ∀[f,g:PowerSeries(X;r)].  ((f*g) ∈ PowerSeries(X;r)) supposing valueall-type(X)
Proof
Definitions occuring in Statement : 
fps-mul: (f*g)
, 
power-series: PowerSeries(X;r)
, 
deq: EqDecider(T)
, 
valueall-type: valueall-type(T)
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
universe: Type
, 
crng: CRng
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
crng: CRng
, 
rng: Rng
, 
prop: ℙ
, 
and: P ∧ Q
, 
fps-mul: (f*g)
, 
so_lambda: λ2x.t[x]
, 
pi1: fst(t)
, 
pi2: snd(t)
, 
so_apply: x[s]
, 
cand: A c∧ B
, 
subtype_rel: A ⊆r B
Lemmas referenced : 
crng_properties, 
rng_properties, 
rng_all_properties, 
ring_p_wf, 
rng_car_wf, 
rng_plus_wf, 
rng_zero_wf, 
rng_minus_wf, 
rng_times_wf, 
rng_one_wf, 
rng_plus_comm, 
rng_plus_comm2, 
power-series_wf, 
crng_wf, 
deq_wf, 
valueall-type_wf, 
bag-summation_wf, 
bag_wf, 
fps-coeff_wf, 
bag-partitions_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
setElimination, 
rename, 
dependent_set_memberEquality, 
productElimination, 
sqequalRule, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality, 
because_Cache, 
universeEquality, 
lambdaEquality, 
productEquality, 
cumulativity, 
applyEquality, 
independent_isectElimination, 
independent_pairFormation
Latex:
\mforall{}[X:Type]
    \mforall{}[eq:EqDecider(X)].  \mforall{}[r:CRng].  \mforall{}[f,g:PowerSeries(X;r)].    ((f*g)  \mmember{}  PowerSeries(X;r)) 
    supposing  valueall-type(X)
Date html generated:
2016_05_15-PM-09_47_39
Last ObjectModification:
2015_12_27-PM-04_40_53
Theory : power!series
Home
Index