Nuprl Lemma : fps-div_wf

[X:Type]
  ∀[eq:EqDecider(X)]. ∀[r:CRng]. ∀[x:|r|]. ∀[f,g:PowerSeries(X;r)].  ((f÷g) ∈ PowerSeries(X;r)) 
  supposing valueall-type(X)


Proof




Definitions occuring in Statement :  fps-div: (f÷g) power-series: PowerSeries(X;r) deq: EqDecider(T) valueall-type: valueall-type(T) uimplies: supposing a uall: [x:A]. B[x] member: t ∈ T universe: Type crng: CRng rng_car: |r|
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a fps-div: (f÷g) subtype_rel: A ⊆B power-series: PowerSeries(X;r) crng: CRng rng: Rng
Lemmas referenced :  fps-div-coeff_wf bag_wf rng_car_wf power-series_wf crng_wf deq_wf valueall-type_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule lambdaEquality lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality independent_isectElimination hypothesis applyEquality functionEquality setElimination rename axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality because_Cache universeEquality

Latex:
\mforall{}[X:Type]
    \mforall{}[eq:EqDecider(X)].  \mforall{}[r:CRng].  \mforall{}[x:|r|].  \mforall{}[f,g:PowerSeries(X;r)].    ((f\mdiv{}g)  \mmember{}  PowerSeries(X;r)) 
    supposing  valueall-type(X)



Date html generated: 2016_05_15-PM-09_48_47
Last ObjectModification: 2015_12_27-PM-04_40_43

Theory : power!series


Home Index