Nuprl Lemma : fps-div-coeff_wf

[X:Type]
  ∀[eq:EqDecider(X)]. ∀[r:CRng]. ∀[f,g:PowerSeries(X;r)]. ∀[x:|r|]. ∀[b:bag(X)].  (fps-div-coeff(eq;r;f;g;x;b) ∈ |r|) 
  supposing valueall-type(X)


Proof




Definitions occuring in Statement :  fps-div-coeff: fps-div-coeff(eq;r;f;g;x;b) power-series: PowerSeries(X;r) bag: bag(T) deq: EqDecider(T) valueall-type: valueall-type(T) uimplies: supposing a uall: [x:A]. B[x] member: t ∈ T universe: Type crng: CRng rng_car: |r|
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a all: x:A. B[x] nat: implies:  Q false: False ge: i ≥  satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] not: ¬A top: Top and: P ∧ Q prop: guard: {T} subtype_rel: A ⊆B int_seg: {i..j-} lelt: i ≤ j < k decidable: Dec(P) or: P ∨ Q le: A ≤ B less_than': less_than'(a;b) fps-div-coeff: fps-div-coeff(eq;r;f;g;x;b) infix_ap: y crng: CRng rng: Rng so_lambda: λ2x.t[x] so_apply: x[s] pi2: snd(t) pi1: fst(t) less_than: a < b squash: T cand: c∧ B uiff: uiff(P;Q) iff: ⇐⇒ Q rev_implies:  Q
Lemmas referenced :  nat_properties satisfiable-full-omega-tt intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf less_than_wf le_wf bag-size_wf nat_wf int_seg_wf int_seg_properties decidable__le subtract_wf intformnot_wf itermSubtract_wf int_formula_prop_not_lemma int_term_value_subtract_lemma decidable__equal_int int_seg_subtype false_wf intformeq_wf int_formula_prop_eq_lemma rng_times_wf rng_plus_wf fps-coeff_wf rng_minus_wf crng_properties rng_all_properties bag_wf pi2_wf bag-summation_wf infix_ap_wf decidable__lt lelt_wf rng_plus_comm2 equal_wf itermAdd_wf int_term_value_add_lemma rng_car_wf power-series_wf crng_wf deq_wf valueall-type_wf bag-append_wf pi1_wf_top bag-subtype bag-partitions_wf bag-member_wf subtype_rel_bag subtype_rel_sets bag-member-partitions bag-filter_wf bnot_wf bag-null_wf assert_wf set_wf bag-size-append null-bag-size eq_int_wf not_wf equal-wf-T-base iff_transitivity iff_weakening_uiff assert_of_bnot assert_of_eq_int
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lambdaFormation thin extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality hypothesis setElimination rename sqequalRule intWeakElimination natural_numberEquality independent_isectElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality dependent_functionElimination isect_memberEquality voidElimination voidEquality independent_pairFormation computeAll independent_functionElimination axiomEquality equalityTransitivity equalitySymmetry cumulativity applyEquality because_Cache productElimination unionElimination applyLambdaEquality hypothesis_subsumption dependent_set_memberEquality setEquality productEquality independent_pairEquality imageElimination addEquality universeEquality hyp_replacement baseClosed impliesFunctionality

Latex:
\mforall{}[X:Type]
    \mforall{}[eq:EqDecider(X)].  \mforall{}[r:CRng].  \mforall{}[f,g:PowerSeries(X;r)].  \mforall{}[x:|r|].  \mforall{}[b:bag(X)].
        (fps-div-coeff(eq;r;f;g;x;b)  \mmember{}  |r|) 
    supposing  valueall-type(X)



Date html generated: 2018_05_21-PM-09_55_30
Last ObjectModification: 2017_07_26-PM-06_32_43

Theory : power!series


Home Index