Nuprl Lemma : fps-div-coeff_wf
∀[X:Type]
  ∀[eq:EqDecider(X)]. ∀[r:CRng]. ∀[f,g:PowerSeries(X;r)]. ∀[x:|r|]. ∀[b:bag(X)].  (fps-div-coeff(eq;r;f;g;x;b) ∈ |r|) 
  supposing valueall-type(X)
Proof
Definitions occuring in Statement : 
fps-div-coeff: fps-div-coeff(eq;r;f;g;x;b)
, 
power-series: PowerSeries(X;r)
, 
bag: bag(T)
, 
deq: EqDecider(T)
, 
valueall-type: valueall-type(T)
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
universe: Type
, 
crng: CRng
, 
rng_car: |r|
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
all: ∀x:A. B[x]
, 
nat: ℕ
, 
implies: P 
⇒ Q
, 
false: False
, 
ge: i ≥ j 
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
not: ¬A
, 
top: Top
, 
and: P ∧ Q
, 
prop: ℙ
, 
guard: {T}
, 
subtype_rel: A ⊆r B
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
, 
fps-div-coeff: fps-div-coeff(eq;r;f;g;x;b)
, 
infix_ap: x f y
, 
crng: CRng
, 
rng: Rng
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
pi2: snd(t)
, 
pi1: fst(t)
, 
less_than: a < b
, 
squash: ↓T
, 
cand: A c∧ B
, 
uiff: uiff(P;Q)
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
Lemmas referenced : 
nat_properties, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
intformless_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_wf, 
ge_wf, 
less_than_wf, 
le_wf, 
bag-size_wf, 
nat_wf, 
int_seg_wf, 
int_seg_properties, 
decidable__le, 
subtract_wf, 
intformnot_wf, 
itermSubtract_wf, 
int_formula_prop_not_lemma, 
int_term_value_subtract_lemma, 
decidable__equal_int, 
int_seg_subtype, 
false_wf, 
intformeq_wf, 
int_formula_prop_eq_lemma, 
rng_times_wf, 
rng_plus_wf, 
fps-coeff_wf, 
rng_minus_wf, 
crng_properties, 
rng_all_properties, 
bag_wf, 
pi2_wf, 
bag-summation_wf, 
infix_ap_wf, 
decidable__lt, 
lelt_wf, 
rng_plus_comm2, 
equal_wf, 
itermAdd_wf, 
int_term_value_add_lemma, 
rng_car_wf, 
power-series_wf, 
crng_wf, 
deq_wf, 
valueall-type_wf, 
bag-append_wf, 
pi1_wf_top, 
bag-subtype, 
bag-partitions_wf, 
bag-member_wf, 
subtype_rel_bag, 
subtype_rel_sets, 
bag-member-partitions, 
bag-filter_wf, 
bnot_wf, 
bag-null_wf, 
assert_wf, 
set_wf, 
bag-size-append, 
null-bag-size, 
eq_int_wf, 
not_wf, 
equal-wf-T-base, 
iff_transitivity, 
iff_weakening_uiff, 
assert_of_bnot, 
assert_of_eq_int
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lambdaFormation, 
thin, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
hypothesisEquality, 
hypothesis, 
setElimination, 
rename, 
sqequalRule, 
intWeakElimination, 
natural_numberEquality, 
independent_isectElimination, 
dependent_pairFormation, 
lambdaEquality, 
int_eqEquality, 
intEquality, 
dependent_functionElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
independent_pairFormation, 
computeAll, 
independent_functionElimination, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
cumulativity, 
applyEquality, 
because_Cache, 
productElimination, 
unionElimination, 
applyLambdaEquality, 
hypothesis_subsumption, 
dependent_set_memberEquality, 
setEquality, 
productEquality, 
independent_pairEquality, 
imageElimination, 
addEquality, 
universeEquality, 
hyp_replacement, 
baseClosed, 
impliesFunctionality
Latex:
\mforall{}[X:Type]
    \mforall{}[eq:EqDecider(X)].  \mforall{}[r:CRng].  \mforall{}[f,g:PowerSeries(X;r)].  \mforall{}[x:|r|].  \mforall{}[b:bag(X)].
        (fps-div-coeff(eq;r;f;g;x;b)  \mmember{}  |r|) 
    supposing  valueall-type(X)
Date html generated:
2018_05_21-PM-09_55_30
Last ObjectModification:
2017_07_26-PM-06_32_43
Theory : power!series
Home
Index