Nuprl Lemma : neg_thru_op_fps

[X:Type]. ∀[r:CRng]. ∀[a,b:PowerSeries(X;r)].  (-((a+b)) (-(b)+-(a)) ∈ PowerSeries(X;r))


Proof




Definitions occuring in Statement :  fps-neg: -(f) fps-add: (f+g) power-series: PowerSeries(X;r) uall: [x:A]. B[x] universe: Type equal: t ∈ T crng: CRng
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T fps-neg: -(f) fps-add: (f+g) power-series: PowerSeries(X;r) fps-coeff: f[b] squash: T prop: crng: CRng rng: Rng infix_ap: y true: True subtype_rel: A ⊆B uimplies: supposing a guard: {T} iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q implies:  Q
Lemmas referenced :  equal_wf squash_wf true_wf rng_car_wf rng_minus_over_plus rng_plus_wf rng_minus_wf iff_weakening_equal infix_ap_wf bag_wf power-series_wf crng_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule functionExtensionality applyEquality thin lambdaEquality sqequalHypSubstitution imageElimination extract_by_obid isectElimination hypothesisEquality equalityTransitivity hypothesis equalitySymmetry because_Cache setElimination rename natural_numberEquality imageMemberEquality baseClosed universeEquality independent_isectElimination productElimination independent_functionElimination cumulativity isect_memberEquality axiomEquality

Latex:
\mforall{}[X:Type].  \mforall{}[r:CRng].  \mforall{}[a,b:PowerSeries(X;r)].    (-((a+b))  =  (-(b)+-(a)))



Date html generated: 2018_05_21-PM-09_56_37
Last ObjectModification: 2017_07_26-PM-06_33_01

Theory : power!series


Home Index