Nuprl Lemma : bag-member-iff
∀[T:Type]. ∀[bs:bag(T)]. ∀[x:T].  uiff(x ↓∈ bs;↓∃as:bag(T). (bs = ({x} + as) ∈ bag(T)))
Proof
Definitions occuring in Statement : 
bag-member: x ↓∈ bs
, 
bag-append: as + bs
, 
single-bag: {x}
, 
bag: bag(T)
, 
uiff: uiff(P;Q)
, 
uall: ∀[x:A]. B[x]
, 
exists: ∃x:A. B[x]
, 
squash: ↓T
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
uimplies: b supposing a
, 
squash: ↓T
, 
prop: ℙ
, 
bag-member: x ↓∈ bs
, 
so_lambda: λ2x.t[x]
, 
all: ∀x:A. B[x]
, 
so_apply: x[s]
, 
exists: ∃x:A. B[x]
, 
subtype_rel: A ⊆r B
, 
single-bag: {x}
, 
bag-append: as + bs
, 
append: as @ bs
, 
so_lambda: so_lambda(x,y,z.t[x; y; z])
, 
top: Top
, 
so_apply: x[s1;s2;s3]
, 
sq_stable: SqStable(P)
, 
implies: P 
⇒ Q
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
sq_or: a ↓∨ b
, 
or: P ∨ Q
Lemmas referenced : 
bag-member_wf, 
squash_wf, 
exists_wf, 
bag_wf, 
equal_wf, 
bag-append_wf, 
single-bag_wf, 
bag-member-iff-hd, 
list-subtype-bag, 
list_ind_cons_lemma, 
list_ind_nil_lemma, 
sq_stable__bag-member, 
bag-member-append, 
bag-member-single
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
independent_pairFormation, 
hypothesis, 
sqequalHypSubstitution, 
imageElimination, 
sqequalRule, 
imageMemberEquality, 
hypothesisEquality, 
thin, 
baseClosed, 
extract_by_obid, 
isectElimination, 
cumulativity, 
lambdaEquality, 
dependent_functionElimination, 
productElimination, 
independent_pairEquality, 
isect_memberEquality, 
because_Cache, 
equalityTransitivity, 
equalitySymmetry, 
universeEquality, 
independent_isectElimination, 
dependent_pairFormation, 
applyEquality, 
voidElimination, 
voidEquality, 
independent_functionElimination, 
hyp_replacement, 
Error :applyLambdaEquality, 
inlFormation
Latex:
\mforall{}[T:Type].  \mforall{}[bs:bag(T)].  \mforall{}[x:T].    uiff(x  \mdownarrow{}\mmember{}  bs;\mdownarrow{}\mexists{}as:bag(T).  (bs  =  (\{x\}  +  as)))
Date html generated:
2016_10_25-AM-10_27_34
Last ObjectModification:
2016_07_12-AM-06_43_34
Theory : bags
Home
Index