Nuprl Lemma : bag-member-iff

[T:Type]. ∀[bs:bag(T)]. ∀[x:T].  uiff(x ↓∈ bs;↓∃as:bag(T). (bs ({x} as) ∈ bag(T)))


Proof




Definitions occuring in Statement :  bag-member: x ↓∈ bs bag-append: as bs single-bag: {x} bag: bag(T) uiff: uiff(P;Q) uall: [x:A]. B[x] exists: x:A. B[x] squash: T universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a squash: T prop: bag-member: x ↓∈ bs so_lambda: λ2x.t[x] all: x:A. B[x] so_apply: x[s] exists: x:A. B[x] subtype_rel: A ⊆B single-bag: {x} bag-append: as bs append: as bs so_lambda: so_lambda(x,y,z.t[x; y; z]) top: Top so_apply: x[s1;s2;s3] sq_stable: SqStable(P) implies:  Q iff: ⇐⇒ Q rev_implies:  Q sq_or: a ↓∨ b or: P ∨ Q
Lemmas referenced :  bag-member_wf squash_wf exists_wf bag_wf equal_wf bag-append_wf single-bag_wf bag-member-iff-hd list-subtype-bag list_ind_cons_lemma list_ind_nil_lemma sq_stable__bag-member bag-member-append bag-member-single
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut independent_pairFormation hypothesis sqequalHypSubstitution imageElimination sqequalRule imageMemberEquality hypothesisEquality thin baseClosed extract_by_obid isectElimination cumulativity lambdaEquality dependent_functionElimination productElimination independent_pairEquality isect_memberEquality because_Cache equalityTransitivity equalitySymmetry universeEquality independent_isectElimination dependent_pairFormation applyEquality voidElimination voidEquality independent_functionElimination hyp_replacement Error :applyLambdaEquality,  inlFormation

Latex:
\mforall{}[T:Type].  \mforall{}[bs:bag(T)].  \mforall{}[x:T].    uiff(x  \mdownarrow{}\mmember{}  bs;\mdownarrow{}\mexists{}as:bag(T).  (bs  =  (\{x\}  +  as)))



Date html generated: 2016_10_25-AM-10_27_34
Last ObjectModification: 2016_07_12-AM-06_43_34

Theory : bags


Home Index