Nuprl Lemma : mul_over_plus_fps
∀[X:Type]
  ∀[eq:EqDecider(X)]. ∀[r:CRng]. ∀[a,b,c:PowerSeries(X;r)].
    (((a*(b+c)) = ((a*b)+(a*c)) ∈ PowerSeries(X;r)) ∧ (((b+c)*a) = ((b*a)+(c*a)) ∈ PowerSeries(X;r))) 
  supposing valueall-type(X)
Proof
Definitions occuring in Statement : 
fps-mul: (f*g)
, 
fps-add: (f+g)
, 
power-series: PowerSeries(X;r)
, 
deq: EqDecider(T)
, 
valueall-type: valueall-type(T)
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
and: P ∧ Q
, 
universe: Type
, 
equal: s = t ∈ T
, 
crng: CRng
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
subtype_rel: A ⊆r B
, 
fps-rng: fps-rng(r)
, 
rng_car: |r|
, 
pi1: fst(t)
, 
rng_times: *
, 
pi2: snd(t)
, 
rng_plus: +r
, 
infix_ap: x f y
, 
and: P ∧ Q
Lemmas referenced : 
rng_times_over_plus, 
fps-rng_wf, 
crng_subtype_rng, 
crng_wf, 
deq_wf, 
valueall-type_wf, 
istype-universe
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
independent_isectElimination, 
hypothesis, 
applyEquality, 
sqequalRule, 
isect_memberEquality_alt, 
productElimination, 
independent_pairEquality, 
axiomEquality, 
isectIsTypeImplies, 
inhabitedIsType, 
universeIsType, 
instantiate, 
universeEquality
Latex:
\mforall{}[X:Type]
    \mforall{}[eq:EqDecider(X)].  \mforall{}[r:CRng].  \mforall{}[a,b,c:PowerSeries(X;r)].
        (((a*(b+c))  =  ((a*b)+(a*c)))  \mwedge{}  (((b+c)*a)  =  ((b*a)+(c*a)))) 
    supposing  valueall-type(X)
Date html generated:
2020_05_20-AM-09_05_27
Last ObjectModification:
2020_02_03-PM-02_56_22
Theory : power!series
Home
Index