Nuprl Lemma : mul_over_plus_fps

[X:Type]
  ∀[eq:EqDecider(X)]. ∀[r:CRng]. ∀[a,b,c:PowerSeries(X;r)].
    (((a*(b+c)) ((a*b)+(a*c)) ∈ PowerSeries(X;r)) ∧ (((b+c)*a) ((b*a)+(c*a)) ∈ PowerSeries(X;r))) 
  supposing valueall-type(X)


Proof




Definitions occuring in Statement :  fps-mul: (f*g) fps-add: (f+g) power-series: PowerSeries(X;r) deq: EqDecider(T) valueall-type: valueall-type(T) uimplies: supposing a uall: [x:A]. B[x] and: P ∧ Q universe: Type equal: t ∈ T crng: CRng
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a subtype_rel: A ⊆B fps-rng: fps-rng(r) rng_car: |r| pi1: fst(t) rng_times: * pi2: snd(t) rng_plus: +r infix_ap: y and: P ∧ Q
Lemmas referenced :  rng_times_over_plus fps-rng_wf crng_subtype_rng crng_wf deq_wf valueall-type_wf istype-universe
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality independent_isectElimination hypothesis applyEquality sqequalRule isect_memberEquality_alt productElimination independent_pairEquality axiomEquality isectIsTypeImplies inhabitedIsType universeIsType instantiate universeEquality

Latex:
\mforall{}[X:Type]
    \mforall{}[eq:EqDecider(X)].  \mforall{}[r:CRng].  \mforall{}[a,b,c:PowerSeries(X;r)].
        (((a*(b+c))  =  ((a*b)+(a*c)))  \mwedge{}  (((b+c)*a)  =  ((b*a)+(c*a)))) 
    supposing  valueall-type(X)



Date html generated: 2020_05_20-AM-09_05_27
Last ObjectModification: 2020_02_03-PM-02_56_22

Theory : power!series


Home Index