Nuprl Lemma : fps-rng_wf
∀[X:Type]. ∀[eq:EqDecider(X)]. ∀[r:CRng].  (fps-rng(r) ∈ CRng) supposing valueall-type(X)
Proof
Definitions occuring in Statement : 
fps-rng: fps-rng(r), 
deq: EqDecider(T), 
valueall-type: valueall-type(T), 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
universe: Type, 
crng: CRng
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
uimplies: b supposing a, 
crng: CRng, 
rng: Rng, 
prop: ℙ, 
fps-rng: fps-rng(r), 
rng_sig: RngSig, 
ring_p: IsRing(T;plus;zero;neg;times;one), 
and: P ∧ Q, 
group_p: IsGroup(T;op;id;inv), 
cand: A c∧ B, 
rng_car: |r|, 
pi1: fst(t), 
rng_plus: +r, 
pi2: snd(t), 
rng_zero: 0, 
rng_minus: -r, 
infix_ap: x f y, 
squash: ↓T, 
true: True, 
subtype_rel: A ⊆r B, 
guard: {T}, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
implies: P ⇒ Q, 
rng_times: *, 
rng_one: 1, 
monoid_p: IsMonoid(T;op;id), 
inverse: Inverse(T;op;id;inv), 
bilinear: BiLinear(T;pl;tm), 
assoc: Assoc(T;op), 
fps-coeff: f[b], 
power-series: PowerSeries(X;r), 
fps-add: (f+g), 
fps-zero: 0, 
ident: Ident(T;op;id), 
fps-neg: -(f), 
comm: Comm(T;op), 
fps-one: 1, 
fps-mul: (f*g), 
so_lambda: λ2x.t[x], 
all: ∀x:A. B[x], 
so_apply: x[s], 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
uiff: uiff(P;Q), 
ifthenelse: if b then t else f fi , 
bfalse: ff, 
exists: ∃x:A. B[x], 
or: P ∨ Q, 
sq_type: SQType(T), 
bnot: ¬bb, 
assert: ↑b, 
false: False, 
not: ¬A, 
top: Top, 
bag-null: bag-null(bs), 
empty-bag: {}
Lemmas referenced : 
comm_wf, 
rng_car_wf, 
rng_times_wf, 
crng_wf, 
deq_wf, 
valueall-type_wf, 
ring_p_wf, 
rng_plus_wf, 
rng_zero_wf, 
rng_minus_wf, 
rng_one_wf, 
bool_wf, 
unit_wf2, 
fps-one_wf, 
fps-mul_wf, 
fps-neg_wf, 
fps-zero_wf, 
fps-add_wf, 
btrue_wf, 
power-series_wf, 
crng_properties, 
rng_properties, 
equal_wf, 
squash_wf, 
true_wf, 
istype-universe, 
fps-add-comm, 
subtype_rel_self, 
iff_weakening_equal, 
fps-add-assoc, 
bag_wf, 
fps-mul-assoc, 
rng_plus_comm, 
fps-mul-comm, 
bag-split, 
bag-null_wf, 
bag-partitions_wf, 
bag-summation-append, 
eqtt_to_assert, 
assert-bag-null, 
eqff_to_assert, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
iff_weakening_uiff, 
assert_wf, 
equal-wf-T-base, 
bag-filter_wf, 
bnot_wf, 
bag-summation_wf, 
crng_all_properties, 
infix_ap_wf, 
bag-append-ident, 
empty-bag_wf, 
bag-partitions-with-one-given, 
subtype_rel_bag, 
iff_wf, 
assert-bag-eq, 
bag-eq_wf, 
pi2_wf, 
iff_imp_equal_bool, 
bag-summation-single, 
pi1_wf_top, 
subtype_rel_product, 
top_wf, 
istype-void, 
null_nil_lemma, 
bag-summation-is-zero, 
null_wf3, 
bag-subtype-list, 
assert_of_null, 
assert_elim, 
bfalse_wf, 
btrue_neq_bfalse, 
subtype_rel_list, 
bag-member_wf, 
rng_plus_zero, 
fps-coeff_wf, 
rng_times_zero, 
assoc_wf, 
bag-summation-add
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
dependent_set_memberEquality_alt, 
universeIsType, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
setElimination, 
rename, 
hypothesisEquality, 
hypothesis, 
because_Cache, 
sqequalRule, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality_alt, 
universeEquality, 
productEquality, 
unionEquality, 
functionEquality, 
inlEquality, 
independent_isectElimination, 
lambdaEquality, 
dependent_pairEquality, 
productElimination, 
independent_pairFormation, 
applyEquality, 
lambdaEquality_alt, 
imageElimination, 
inhabitedIsType, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
instantiate, 
independent_functionElimination, 
independent_pairEquality, 
isect_memberEquality, 
isect_memberFormation, 
functionExtensionality, 
functionExtensionality_alt, 
dependent_functionElimination, 
productIsType, 
lambdaFormation_alt, 
unionElimination, 
equalityElimination, 
dependent_pairFormation_alt, 
equalityIsType1, 
promote_hyp, 
cumulativity, 
voidElimination, 
equalityIsType3, 
hyp_replacement, 
applyLambdaEquality, 
setEquality, 
setIsType, 
impliesFunctionality, 
addLevel, 
lambdaFormation, 
dependent_pairFormation, 
voidEquality
Latex:
\mforall{}[X:Type].  \mforall{}[eq:EqDecider(X)].  \mforall{}[r:CRng].    (fps-rng(r)  \mmember{}  CRng)  supposing  valueall-type(X)
Date html generated:
2019_10_16-AM-11_34_24
Last ObjectModification:
2018_10_11-PM-02_48_30
Theory : power!series
Home
Index