Nuprl Lemma : fps-rng_wf

[X:Type]. ∀[eq:EqDecider(X)]. ∀[r:CRng].  (fps-rng(r) ∈ CRng) supposing valueall-type(X)


Proof




Definitions occuring in Statement :  fps-rng: fps-rng(r) deq: EqDecider(T) valueall-type: valueall-type(T) uimplies: supposing a uall: [x:A]. B[x] member: t ∈ T universe: Type crng: CRng
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a crng: CRng rng: Rng prop: fps-rng: fps-rng(r) rng_sig: RngSig ring_p: IsRing(T;plus;zero;neg;times;one) and: P ∧ Q group_p: IsGroup(T;op;id;inv) cand: c∧ B rng_car: |r| pi1: fst(t) rng_plus: +r pi2: snd(t) rng_zero: 0 rng_minus: -r infix_ap: y squash: T true: True subtype_rel: A ⊆B guard: {T} iff: ⇐⇒ Q rev_implies:  Q implies:  Q rng_times: * rng_one: 1 monoid_p: IsMonoid(T;op;id) inverse: Inverse(T;op;id;inv) bilinear: BiLinear(T;pl;tm) assoc: Assoc(T;op) fps-coeff: f[b] power-series: PowerSeries(X;r) fps-add: (f+g) fps-zero: 0 ident: Ident(T;op;id) fps-neg: -(f) comm: Comm(T;op) fps-one: 1 fps-mul: (f*g) so_lambda: λ2x.t[x] all: x:A. B[x] so_apply: x[s] bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) ifthenelse: if then else fi  bfalse: ff exists: x:A. B[x] or: P ∨ Q sq_type: SQType(T) bnot: ¬bb assert: b false: False not: ¬A top: Top bag-null: bag-null(bs) empty-bag: {}
Lemmas referenced :  comm_wf rng_car_wf rng_times_wf crng_wf deq_wf valueall-type_wf ring_p_wf rng_plus_wf rng_zero_wf rng_minus_wf rng_one_wf bool_wf unit_wf2 fps-one_wf fps-mul_wf fps-neg_wf fps-zero_wf fps-add_wf btrue_wf power-series_wf crng_properties rng_properties equal_wf squash_wf true_wf istype-universe fps-add-comm subtype_rel_self iff_weakening_equal fps-add-assoc bag_wf fps-mul-assoc rng_plus_comm fps-mul-comm bag-split bag-null_wf bag-partitions_wf bag-summation-append eqtt_to_assert assert-bag-null eqff_to_assert bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot iff_weakening_uiff assert_wf equal-wf-T-base bag-filter_wf bnot_wf bag-summation_wf crng_all_properties infix_ap_wf bag-append-ident empty-bag_wf bag-partitions-with-one-given subtype_rel_bag iff_wf assert-bag-eq bag-eq_wf pi2_wf iff_imp_equal_bool bag-summation-single pi1_wf_top subtype_rel_product top_wf istype-void null_nil_lemma bag-summation-is-zero null_wf3 bag-subtype-list assert_of_null assert_elim bfalse_wf btrue_neq_bfalse subtype_rel_list bag-member_wf rng_plus_zero fps-coeff_wf rng_times_zero assoc_wf bag-summation-add
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut dependent_set_memberEquality_alt universeIsType extract_by_obid sqequalHypSubstitution isectElimination thin setElimination rename hypothesisEquality hypothesis because_Cache sqequalRule axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality_alt universeEquality productEquality unionEquality functionEquality inlEquality independent_isectElimination lambdaEquality dependent_pairEquality productElimination independent_pairFormation applyEquality lambdaEquality_alt imageElimination inhabitedIsType natural_numberEquality imageMemberEquality baseClosed instantiate independent_functionElimination independent_pairEquality isect_memberEquality isect_memberFormation functionExtensionality functionExtensionality_alt dependent_functionElimination productIsType lambdaFormation_alt unionElimination equalityElimination dependent_pairFormation_alt equalityIsType1 promote_hyp cumulativity voidElimination equalityIsType3 hyp_replacement applyLambdaEquality setEquality setIsType impliesFunctionality addLevel lambdaFormation dependent_pairFormation voidEquality

Latex:
\mforall{}[X:Type].  \mforall{}[eq:EqDecider(X)].  \mforall{}[r:CRng].    (fps-rng(r)  \mmember{}  CRng)  supposing  valueall-type(X)



Date html generated: 2019_10_16-AM-11_34_24
Last ObjectModification: 2018_10_11-PM-02_48_30

Theory : power!series


Home Index