Nuprl Lemma : fps-add-assoc

[X:Type]. ∀[r:CRng]. ∀[f,g,h:PowerSeries(X;r)].  (((f+g)+h) (f+(g+h)) ∈ PowerSeries(X;r))


Proof




Definitions occuring in Statement :  fps-add: (f+g) power-series: PowerSeries(X;r) uall: [x:A]. B[x] universe: Type equal: t ∈ T crng: CRng
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T crng: CRng rng: Rng uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a all: x:A. B[x] fps-add: (f+g) fps-coeff: f[b] infix_ap: y ring_p: IsRing(T;plus;zero;neg;times;one) group_p: IsGroup(T;op;id;inv) squash: T prop: true: True subtype_rel: A ⊆B guard: {T} iff: ⇐⇒ Q rev_implies:  Q implies:  Q
Lemmas referenced :  crng_properties rng_properties fps-ext fps-add_wf equal_wf squash_wf true_wf rng_car_wf rng_plus_assoc fps-coeff_wf infix_ap_wf rng_plus_wf iff_weakening_equal
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis setElimination rename because_Cache sqequalRule isect_memberEquality axiomEquality cumulativity productElimination independent_isectElimination lambdaFormation equalitySymmetry applyEquality lambdaEquality imageElimination equalityTransitivity universeEquality natural_numberEquality imageMemberEquality baseClosed independent_functionElimination

Latex:
\mforall{}[X:Type].  \mforall{}[r:CRng].  \mforall{}[f,g,h:PowerSeries(X;r)].    (((f+g)+h)  =  (f+(g+h)))



Date html generated: 2018_05_21-PM-09_55_05
Last ObjectModification: 2017_07_26-PM-06_32_36

Theory : power!series


Home Index