Nuprl Lemma : fps-ext
∀[X:Type]. ∀[r:CRng]. ∀[f,g:PowerSeries(X;r)].  uiff(f = g ∈ PowerSeries(X;r);∀b:bag(X). (f[b] = g[b] ∈ |r|))
Proof
Definitions occuring in Statement : 
fps-coeff: f[b]
, 
power-series: PowerSeries(X;r)
, 
bag: bag(T)
, 
uiff: uiff(P;Q)
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
universe: Type
, 
equal: s = t ∈ T
, 
crng: CRng
, 
rng_car: |r|
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
uimplies: b supposing a
, 
all: ∀x:A. B[x]
, 
prop: ℙ
, 
power-series: PowerSeries(X;r)
, 
fps-coeff: f[b]
, 
squash: ↓T
, 
crng: CRng
, 
rng: Rng
, 
true: True
, 
subtype_rel: A ⊆r B
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
implies: P 
⇒ Q
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
Lemmas referenced : 
and_wf, 
equal_wf, 
power-series_wf, 
fps-coeff_wf, 
squash_wf, 
true_wf, 
rng_car_wf, 
iff_weakening_equal, 
all_wf, 
bag_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
independent_pairFormation, 
lambdaFormation, 
equalitySymmetry, 
dependent_set_memberEquality, 
hypothesis, 
hypothesisEquality, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
applyLambdaEquality, 
setElimination, 
rename, 
productElimination, 
because_Cache, 
sqequalRule, 
lambdaEquality, 
dependent_functionElimination, 
axiomEquality, 
cumulativity, 
functionExtensionality, 
applyEquality, 
imageElimination, 
equalityTransitivity, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
universeEquality, 
independent_isectElimination, 
independent_functionElimination, 
independent_pairEquality, 
isect_memberEquality
Latex:
\mforall{}[X:Type].  \mforall{}[r:CRng].  \mforall{}[f,g:PowerSeries(X;r)].    uiff(f  =  g;\mforall{}b:bag(X).  (f[b]  =  g[b]))
Date html generated:
2018_05_21-PM-09_54_44
Last ObjectModification:
2017_07_26-PM-06_32_32
Theory : power!series
Home
Index