Nuprl Lemma : fps-ext

[X:Type]. ∀[r:CRng]. ∀[f,g:PowerSeries(X;r)].  uiff(f g ∈ PowerSeries(X;r);∀b:bag(X). (f[b] g[b] ∈ |r|))


Proof




Definitions occuring in Statement :  fps-coeff: f[b] power-series: PowerSeries(X;r) bag: bag(T) uiff: uiff(P;Q) uall: [x:A]. B[x] all: x:A. B[x] universe: Type equal: t ∈ T crng: CRng rng_car: |r|
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a all: x:A. B[x] prop: power-series: PowerSeries(X;r) fps-coeff: f[b] squash: T crng: CRng rng: Rng true: True subtype_rel: A ⊆B guard: {T} iff: ⇐⇒ Q rev_implies:  Q implies:  Q so_lambda: λ2x.t[x] so_apply: x[s]
Lemmas referenced :  and_wf equal_wf power-series_wf fps-coeff_wf squash_wf true_wf rng_car_wf iff_weakening_equal all_wf bag_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut independent_pairFormation lambdaFormation equalitySymmetry dependent_set_memberEquality hypothesis hypothesisEquality extract_by_obid sqequalHypSubstitution isectElimination thin applyLambdaEquality setElimination rename productElimination because_Cache sqequalRule lambdaEquality dependent_functionElimination axiomEquality cumulativity functionExtensionality applyEquality imageElimination equalityTransitivity natural_numberEquality imageMemberEquality baseClosed universeEquality independent_isectElimination independent_functionElimination independent_pairEquality isect_memberEquality

Latex:
\mforall{}[X:Type].  \mforall{}[r:CRng].  \mforall{}[f,g:PowerSeries(X;r)].    uiff(f  =  g;\mforall{}b:bag(X).  (f[b]  =  g[b]))



Date html generated: 2018_05_21-PM-09_54_44
Last ObjectModification: 2017_07_26-PM-06_32_32

Theory : power!series


Home Index