Nuprl Lemma : fps-add_wf

[X:Type]. ∀[r:CRng]. ∀[f,g:PowerSeries(X;r)].  ((f+g) ∈ PowerSeries(X;r))


Proof




Definitions occuring in Statement :  fps-add: (f+g) power-series: PowerSeries(X;r) uall: [x:A]. B[x] member: t ∈ T universe: Type crng: CRng
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T fps-add: (f+g) crng: CRng rng: Rng subtype_rel: A ⊆B power-series: PowerSeries(X;r)
Lemmas referenced :  rng_plus_wf fps-coeff_wf bag_wf rng_car_wf power-series_wf crng_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule lambdaEquality applyEquality lemma_by_obid sqequalHypSubstitution isectElimination thin setElimination rename hypothesisEquality hypothesis functionEquality axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality because_Cache universeEquality

Latex:
\mforall{}[X:Type].  \mforall{}[r:CRng].  \mforall{}[f,g:PowerSeries(X;r)].    ((f+g)  \mmember{}  PowerSeries(X;r))



Date html generated: 2016_05_15-PM-09_47_29
Last ObjectModification: 2015_12_27-PM-04_40_55

Theory : power!series


Home Index