Nuprl Lemma : bag-partitions-with-one-given

[T:Type]
  ∀[eq:EqDecider(T)]. ∀[as,bs,cs:bag(T)].
    ([p∈bag-partitions(eq;cs)|bag-eq(eq;fst(p);as)] {<as, bs>} ∈ bag(bag(T) × bag(T)))
    ∧ ([p∈bag-partitions(eq;cs)|bag-eq(eq;snd(p);bs)] {<as, bs>} ∈ bag(bag(T) × bag(T))) 
    supposing (as bs) cs ∈ bag(T) 
  supposing valueall-type(T)


Proof




Definitions occuring in Statement :  bag-partitions: bag-partitions(eq;bs) bag-eq: bag-eq(eq;as;bs) bag-filter: [x∈b|p[x]] bag-append: as bs single-bag: {x} bag: bag(T) deq: EqDecider(T) valueall-type: valueall-type(T) uimplies: supposing a uall: [x:A]. B[x] pi1: fst(t) pi2: snd(t) and: P ∧ Q pair: <a, b> product: x:A × B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a and: P ∧ Q cand: c∧ B implies:  Q all: x:A. B[x] so_lambda: λ2x.t[x] so_apply: x[s] top: Top subtype_rel: A ⊆B prop: uiff: uiff(P;Q) bag-member: x ↓∈ bs squash: T pi1: fst(t) rev_uimplies: rev_uimplies(P;Q) true: True guard: {T} iff: ⇐⇒ Q rev_implies:  Q pi2: snd(t)
Lemmas referenced :  bag-extensionality-no-repeats bag_wf decidable__equal_product decidable__equal_bag decidable-equal-deq bag-filter_wf bag-eq_wf pi1_wf_top bag-partitions_wf subtype_rel_bag assert_wf single-bag_wf bag-filter-no-repeats no-repeats-bag-partitions bag-single-no-repeats bag-member-single bag-member_wf bag-member-filter squash_wf true_wf iff_weakening_equal bag-member-partitions assert-bag-eq and_wf equal_wf subtype_rel_product top_wf pi2_wf bag-append_wf deq_wf valueall-type_wf bag-append-cancel bag-append-comm
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin productEquality cumulativity hypothesisEquality hypothesis independent_functionElimination lambdaFormation sqequalRule lambdaEquality because_Cache dependent_functionElimination productElimination independent_pairEquality isect_memberEquality voidElimination voidEquality independent_isectElimination equalityTransitivity equalitySymmetry applyEquality setEquality setElimination rename independent_pairFormation imageElimination imageMemberEquality baseClosed natural_numberEquality universeEquality dependent_set_memberEquality applyLambdaEquality axiomEquality

Latex:
\mforall{}[T:Type]
    \mforall{}[eq:EqDecider(T)].  \mforall{}[as,bs,cs:bag(T)].
        ([p\mmember{}bag-partitions(eq;cs)|bag-eq(eq;fst(p);as)]  =  \{<as,  bs>\})
        \mwedge{}  ([p\mmember{}bag-partitions(eq;cs)|bag-eq(eq;snd(p);bs)]  =  \{<as,  bs>\}) 
        supposing  (as  +  bs)  =  cs 
    supposing  valueall-type(T)



Date html generated: 2018_05_21-PM-09_49_37
Last ObjectModification: 2017_07_26-PM-06_31_14

Theory : bags_2


Home Index