Nuprl Lemma : bag-split
∀[T:Type]. ∀[p:T ⟶ 𝔹]. ∀[as:bag(T)].  (as = ([x∈as|p[x]] + [x∈as|¬bp[x]]) ∈ bag(T))
Proof
Definitions occuring in Statement : 
bag-filter: [x∈b|p[x]]
, 
bag-append: as + bs
, 
bag: bag(T)
, 
bnot: ¬bb
, 
bool: 𝔹
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
function: x:A ⟶ B[x]
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
squash: ↓T
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
true: True
, 
subtype_rel: A ⊆r B
, 
uimplies: b supposing a
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
rev_implies: P 
⇐ Q
, 
implies: P 
⇒ Q
Lemmas referenced : 
equal_wf, 
squash_wf, 
true_wf, 
bag_wf, 
bag-filter-split, 
iff_weakening_equal, 
bool_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
applyEquality, 
thin, 
lambdaEquality, 
sqequalHypSubstitution, 
imageElimination, 
extract_by_obid, 
isectElimination, 
hypothesisEquality, 
equalityTransitivity, 
hypothesis, 
equalitySymmetry, 
universeEquality, 
sqequalRule, 
functionExtensionality, 
cumulativity, 
because_Cache, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
independent_isectElimination, 
productElimination, 
independent_functionElimination, 
isect_memberEquality, 
axiomEquality, 
functionEquality
Latex:
\mforall{}[T:Type].  \mforall{}[p:T  {}\mrightarrow{}  \mBbbB{}].  \mforall{}[as:bag(T)].    (as  =  ([x\mmember{}as|p[x]]  +  [x\mmember{}as|\mneg{}\msubb{}p[x]]))
Date html generated:
2017_10_01-AM-08_45_29
Last ObjectModification:
2017_07_26-PM-04_30_46
Theory : bags
Home
Index