Nuprl Lemma : bag-split
∀[T:Type]. ∀[p:T ⟶ 𝔹]. ∀[as:bag(T)].  (as = ([x∈as|p[x]] + [x∈as|¬bp[x]]) ∈ bag(T))
Proof
Definitions occuring in Statement : 
bag-filter: [x∈b|p[x]], 
bag-append: as + bs, 
bag: bag(T), 
bnot: ¬bb, 
bool: 𝔹, 
uall: ∀[x:A]. B[x], 
so_apply: x[s], 
function: x:A ⟶ B[x], 
universe: Type, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
squash: ↓T, 
prop: ℙ, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
true: True, 
subtype_rel: A ⊆r B, 
uimplies: b supposing a, 
guard: {T}, 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
rev_implies: P ⇐ Q, 
implies: P ⇒ Q
Lemmas referenced : 
equal_wf, 
squash_wf, 
true_wf, 
bag_wf, 
bag-filter-split, 
iff_weakening_equal, 
bool_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
applyEquality, 
thin, 
lambdaEquality, 
sqequalHypSubstitution, 
imageElimination, 
extract_by_obid, 
isectElimination, 
hypothesisEquality, 
equalityTransitivity, 
hypothesis, 
equalitySymmetry, 
universeEquality, 
sqequalRule, 
functionExtensionality, 
cumulativity, 
because_Cache, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
independent_isectElimination, 
productElimination, 
independent_functionElimination, 
isect_memberEquality, 
axiomEquality, 
functionEquality
Latex:
\mforall{}[T:Type].  \mforall{}[p:T  {}\mrightarrow{}  \mBbbB{}].  \mforall{}[as:bag(T)].    (as  =  ([x\mmember{}as|p[x]]  +  [x\mmember{}as|\mneg{}\msubb{}p[x]]))
Date html generated:
2017_10_01-AM-08_45_29
Last ObjectModification:
2017_07_26-PM-04_30_46
Theory : bags
Home
Index