Nuprl Lemma : bag-filter-split
∀[T:Type]. ∀[p:T ⟶ 𝔹]. ∀[bs:bag(T)].  (([x∈bs|p[x]] + [x∈bs|¬bp[x]]) = bs ∈ bag(T))
Proof
Definitions occuring in Statement : 
bag-filter: [x∈b|p[x]]
, 
bag-append: as + bs
, 
bag: bag(T)
, 
bnot: ¬bb
, 
bool: 𝔹
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
function: x:A ⟶ B[x]
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
squash: ↓T
, 
exists: ∃x:A. B[x]
, 
bag-filter: [x∈b|p[x]]
, 
bag-append: as + bs
, 
bag: bag(T)
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
uimplies: b supposing a
, 
all: ∀x:A. B[x]
, 
so_apply: x[s]
, 
prop: ℙ
, 
implies: P 
⇒ Q
, 
so_lambda: λ2x.t[x]
, 
subtype_rel: A ⊆r B
Lemmas referenced : 
bag_to_squash_list, 
quotient-member-eq, 
list_wf, 
permutation_wf, 
permutation-equiv, 
append_wf, 
filter_wf5, 
l_member_wf, 
bnot_wf, 
permutation-split, 
equal_wf, 
bag_wf, 
bag-append_wf, 
bag-filter_wf, 
subtype_rel_bag, 
assert_wf, 
bool_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
imageElimination, 
productElimination, 
promote_hyp, 
hypothesis, 
rename, 
sqequalRule, 
cumulativity, 
lambdaEquality, 
independent_isectElimination, 
dependent_functionElimination, 
applyEquality, 
functionExtensionality, 
setElimination, 
setEquality, 
because_Cache, 
independent_functionElimination, 
hyp_replacement, 
equalitySymmetry, 
Error :applyLambdaEquality, 
isect_memberEquality, 
axiomEquality, 
functionEquality, 
universeEquality
Latex:
\mforall{}[T:Type].  \mforall{}[p:T  {}\mrightarrow{}  \mBbbB{}].  \mforall{}[bs:bag(T)].    (([x\mmember{}bs|p[x]]  +  [x\mmember{}bs|\mneg{}\msubb{}p[x]])  =  bs)
Date html generated:
2016_10_25-AM-10_22_08
Last ObjectModification:
2016_07_12-AM-06_38_50
Theory : bags
Home
Index