Nuprl Lemma : bag-filter-split

[T:Type]. ∀[p:T ⟶ 𝔹]. ∀[bs:bag(T)].  (([x∈bs|p[x]] [x∈bs|¬bp[x]]) bs ∈ bag(T))


Proof




Definitions occuring in Statement :  bag-filter: [x∈b|p[x]] bag-append: as bs bag: bag(T) bnot: ¬bb bool: 𝔹 uall: [x:A]. B[x] so_apply: x[s] function: x:A ⟶ B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T squash: T exists: x:A. B[x] bag-filter: [x∈b|p[x]] bag-append: as bs bag: bag(T) so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] uimplies: supposing a all: x:A. B[x] so_apply: x[s] prop: implies:  Q so_lambda: λ2x.t[x] subtype_rel: A ⊆B
Lemmas referenced :  bag_to_squash_list quotient-member-eq list_wf permutation_wf permutation-equiv append_wf filter_wf5 l_member_wf bnot_wf permutation-split equal_wf bag_wf bag-append_wf bag-filter_wf subtype_rel_bag assert_wf bool_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality imageElimination productElimination promote_hyp hypothesis rename sqequalRule cumulativity lambdaEquality independent_isectElimination dependent_functionElimination applyEquality functionExtensionality setElimination setEquality because_Cache independent_functionElimination hyp_replacement equalitySymmetry Error :applyLambdaEquality,  isect_memberEquality axiomEquality functionEquality universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[p:T  {}\mrightarrow{}  \mBbbB{}].  \mforall{}[bs:bag(T)].    (([x\mmember{}bs|p[x]]  +  [x\mmember{}bs|\mneg{}\msubb{}p[x]])  =  bs)



Date html generated: 2016_10_25-AM-10_22_08
Last ObjectModification: 2016_07_12-AM-06_38_50

Theory : bags


Home Index