Nuprl Lemma : fps-mul-assoc

[X:Type]. ∀[eq:EqDecider(X)].
  ∀[r:CRng]. ∀[f,g,h:PowerSeries(X;r)].  (((f*g)*h) (f*(g*h)) ∈ PowerSeries(X;r)) supposing valueall-type(X)


Proof




Definitions occuring in Statement :  fps-mul: (f*g) power-series: PowerSeries(X;r) deq: EqDecider(T) valueall-type: valueall-type(T) uimplies: supposing a uall: [x:A]. B[x] universe: Type equal: t ∈ T crng: CRng
Definitions unfolded in proof :  implies:  Q rev_implies:  Q iff: ⇐⇒ Q guard: {T} subtype_rel: A ⊆B all: x:A. B[x] squash: T ring_p: IsRing(T;plus;zero;neg;times;one) true: True top: Top so_apply: x[s] pi2: snd(t) pi1: fst(t) so_lambda: λ2x.t[x] prop: rng: Rng exists: x:A. B[x] infix_ap: y fps-coeff: f[b] power-series: PowerSeries(X;r) fps-mul: (f*g) cand: c∧ B and: P ∧ Q comm: Comm(T;op) crng: CRng uimplies: supposing a member: t ∈ T uall: [x:A]. B[x] so_apply: x[s1;s2] so_lambda: λ2y.t[x; y] group_p: IsGroup(T;op;id;inv)
Lemmas referenced :  bag-summation-linear1-right iff_weakening_equal bag-summation-linear1 true_wf squash_wf equal_wf pi1_wf_top pi2_wf bag-partitions_wf fps-coeff_wf rng_times_wf infix_ap_wf bag-summation_wf valueall-type_wf power-series_wf bag_wf rng_zero_wf rng_plus_wf rng_car_wf group_p_wf rng_properties crng_properties rng_minus_wf rng_all_properties rng_plus_comm bag-double-summation bag-map_wf bag-combine_wf bag-summation-map istype-universe bag-partitions-assoc pi1_wf subtype_rel_self rng_times_assoc
Rules used in proof :  independent_functionElimination universeEquality baseClosed imageMemberEquality dependent_functionElimination imageElimination natural_numberEquality voidEquality voidElimination independent_pairEquality independent_isectElimination productEquality equalitySymmetry equalityTransitivity axiomEquality isect_memberEquality cumulativity applyEquality functionExtensionality dependent_pairFormation lambdaEquality sqequalRule independent_pairFormation productElimination because_Cache hypothesis hypothesisEquality rename setElimination thin isectElimination sqequalHypSubstitution extract_by_obid cut introduction isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution hyp_replacement lambdaEquality_alt universeIsType instantiate inhabitedIsType productIsType lambdaFormation_alt equalityIstype applyLambdaEquality

Latex:
\mforall{}[X:Type].  \mforall{}[eq:EqDecider(X)].
    \mforall{}[r:CRng].  \mforall{}[f,g,h:PowerSeries(X;r)].    (((f*g)*h)  =  (f*(g*h)))  supposing  valueall-type(X)



Date html generated: 2020_05_20-AM-09_05_25
Last ObjectModification: 2020_01_27-PM-04_14_20

Theory : power!series


Home Index