Nuprl Lemma : fps-mul-assoc
∀[X:Type]. ∀[eq:EqDecider(X)].
  ∀[r:CRng]. ∀[f,g,h:PowerSeries(X;r)].  (((f*g)*h) = (f*(g*h)) ∈ PowerSeries(X;r)) supposing valueall-type(X)
Proof
Definitions occuring in Statement : 
fps-mul: (f*g)
, 
power-series: PowerSeries(X;r)
, 
deq: EqDecider(T)
, 
valueall-type: valueall-type(T)
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
universe: Type
, 
equal: s = t ∈ T
, 
crng: CRng
Definitions unfolded in proof : 
implies: P 
⇒ Q
, 
rev_implies: P 
⇐ Q
, 
iff: P 
⇐⇒ Q
, 
guard: {T}
, 
subtype_rel: A ⊆r B
, 
all: ∀x:A. B[x]
, 
squash: ↓T
, 
ring_p: IsRing(T;plus;zero;neg;times;one)
, 
true: True
, 
top: Top
, 
so_apply: x[s]
, 
pi2: snd(t)
, 
pi1: fst(t)
, 
so_lambda: λ2x.t[x]
, 
prop: ℙ
, 
rng: Rng
, 
exists: ∃x:A. B[x]
, 
infix_ap: x f y
, 
fps-coeff: f[b]
, 
power-series: PowerSeries(X;r)
, 
fps-mul: (f*g)
, 
cand: A c∧ B
, 
and: P ∧ Q
, 
comm: Comm(T;op)
, 
crng: CRng
, 
uimplies: b supposing a
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s1;s2]
, 
so_lambda: λ2x y.t[x; y]
, 
group_p: IsGroup(T;op;id;inv)
Lemmas referenced : 
bag-summation-linear1-right, 
iff_weakening_equal, 
bag-summation-linear1, 
true_wf, 
squash_wf, 
equal_wf, 
pi1_wf_top, 
pi2_wf, 
bag-partitions_wf, 
fps-coeff_wf, 
rng_times_wf, 
infix_ap_wf, 
bag-summation_wf, 
valueall-type_wf, 
power-series_wf, 
bag_wf, 
rng_zero_wf, 
rng_plus_wf, 
rng_car_wf, 
group_p_wf, 
rng_properties, 
crng_properties, 
rng_minus_wf, 
rng_all_properties, 
rng_plus_comm, 
bag-double-summation, 
bag-map_wf, 
bag-combine_wf, 
bag-summation-map, 
istype-universe, 
bag-partitions-assoc, 
pi1_wf, 
subtype_rel_self, 
rng_times_assoc
Rules used in proof : 
independent_functionElimination, 
universeEquality, 
baseClosed, 
imageMemberEquality, 
dependent_functionElimination, 
imageElimination, 
natural_numberEquality, 
voidEquality, 
voidElimination, 
independent_pairEquality, 
independent_isectElimination, 
productEquality, 
equalitySymmetry, 
equalityTransitivity, 
axiomEquality, 
isect_memberEquality, 
cumulativity, 
applyEquality, 
functionExtensionality, 
dependent_pairFormation, 
lambdaEquality, 
sqequalRule, 
independent_pairFormation, 
productElimination, 
because_Cache, 
hypothesis, 
hypothesisEquality, 
rename, 
setElimination, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
cut, 
introduction, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution, 
hyp_replacement, 
lambdaEquality_alt, 
universeIsType, 
instantiate, 
inhabitedIsType, 
productIsType, 
lambdaFormation_alt, 
equalityIstype, 
applyLambdaEquality
Latex:
\mforall{}[X:Type].  \mforall{}[eq:EqDecider(X)].
    \mforall{}[r:CRng].  \mforall{}[f,g,h:PowerSeries(X;r)].    (((f*g)*h)  =  (f*(g*h)))  supposing  valueall-type(X)
Date html generated:
2020_05_20-AM-09_05_25
Last ObjectModification:
2020_01_27-PM-04_14_20
Theory : power!series
Home
Index