Nuprl Lemma : bag-partitions-assoc
∀[T:Type]
  ∀[eq:EqDecider(T)]. ∀[bs:bag(T)].
    (⋃x∈bag-partitions(eq;bs).bag-map(λy.<fst(x), y>bag-partitions(eq;snd(x)))
    = bag-map(λ2p.<fst(snd(p)), snd(snd(p)), fst(p)>⋃x∈bag-partitions(eq;bs).bag-map(λy.<snd(x), y>bag-partitions(eq;f\000Cst(x))))
    ∈ bag(bag(T) × bag(T) × bag(T))) 
  supposing valueall-type(T)
Proof
Definitions occuring in Statement : 
bag-partitions: bag-partitions(eq;bs), 
bag-combine: ⋃x∈bs.f[x], 
bag-map: bag-map(f;bs), 
bag: bag(T), 
deq: EqDecider(T), 
valueall-type: valueall-type(T), 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
so_lambda: λ2x.t[x], 
pi1: fst(t), 
pi2: snd(t), 
lambda: λx.A[x], 
pair: <a, b>, 
product: x:A × B[x], 
universe: Type, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
uimplies: b supposing a, 
product-deq: product-deq(A;B;a;b), 
implies: P ⇒ Q, 
all: ∀x:A. B[x], 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
pi1: fst(t), 
pi2: snd(t), 
and: P ∧ Q, 
cand: A c∧ B, 
uiff: uiff(P;Q), 
bag-member: x ↓∈ bs, 
squash: ↓T, 
prop: ℙ, 
top: Top, 
exists: ∃x:A. B[x], 
subtype_rel: A ⊆r B, 
true: True, 
inject: Inj(A;B;f), 
guard: {T}, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced : 
product-deq_wf, 
bag_wf, 
bag-deq_wf, 
deq_wf, 
valueall-type_wf, 
bag-extensionality-no-repeats, 
decidable__equal_product, 
decidable__equal_bag, 
decidable-equal-deq, 
bag-combine_wf, 
bag-partitions_wf, 
bag-map_wf, 
bag-member_wf, 
bag-combine-no-repeats, 
pi1_wf_top, 
pi2_wf, 
bag-member-map, 
bag-member-partitions, 
and_wf, 
equal_wf, 
subtype_rel_product, 
top_wf, 
bag-append_wf, 
squash_wf, 
true_wf, 
bag-map-no-repeats, 
no-repeats-bag-partitions, 
bag-member-combine, 
bag-append-assoc, 
iff_weakening_equal, 
bag-member-subtype, 
exists_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
cumulativity, 
hypothesisEquality, 
hypothesis, 
productEquality, 
comment, 
sqequalRule, 
isect_memberEquality, 
axiomEquality, 
because_Cache, 
equalityTransitivity, 
equalitySymmetry, 
universeEquality, 
independent_functionElimination, 
lambdaFormation, 
lambdaEquality, 
dependent_functionElimination, 
independent_isectElimination, 
independent_pairEquality, 
productElimination, 
independent_pairFormation, 
imageElimination, 
imageMemberEquality, 
baseClosed, 
voidElimination, 
voidEquality, 
hyp_replacement, 
applyLambdaEquality, 
dependent_set_memberEquality, 
setElimination, 
rename, 
applyEquality, 
natural_numberEquality, 
dependent_pairFormation, 
addLevel, 
existsFunctionality, 
andLevelFunctionality
Latex:
\mforall{}[T:Type]
    \mforall{}[eq:EqDecider(T)].  \mforall{}[bs:bag(T)].
        (\mcup{}x\mmember{}bag-partitions(eq;bs).bag-map(\mlambda{}y.<fst(x),  y>bag-partitions(eq;snd(x)))
        =  bag-map(\mlambda{}\msubtwo{}p.<fst(snd(p)),  snd(snd(p)),  fst(p)>
            \mcup{}x\mmember{}bag-partitions(eq;bs).bag-map(\mlambda{}y.<snd(x),  y>bag-partitions(eq;fst(x))))) 
    supposing  valueall-type(T)
Date html generated:
2018_05_21-PM-09_49_50
Last ObjectModification:
2017_07_26-PM-06_31_17
Theory : bags_2
Home
Index