Nuprl Lemma : bag-combine-no-repeats
∀[T1,T2:Type]. ∀[f:T1 ⟶ bag(T2)]. ∀[eq1:EqDecider(T1)]. ∀[eq2:EqDecider(T2)]. ∀[bs:bag(T1)].
  (bag-no-repeats(T2;⋃x∈bs.f[x])) supposing 
     (bag-no-repeats(T1;bs) and 
     ((∀x,y:T1. ∀z:T2.  (z ↓∈ f[x] 
⇒ z ↓∈ f[y] 
⇒ (x = y ∈ T1))) ∧ (∀x:T1. bag-no-repeats(T2;f[x]))))
Proof
Definitions occuring in Statement : 
bag-member: x ↓∈ bs
, 
bag-no-repeats: bag-no-repeats(T;bs)
, 
bag-combine: ⋃x∈bs.f[x]
, 
bag: bag(T)
, 
deq: EqDecider(T)
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
, 
function: x:A ⟶ B[x]
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
and: P ∧ Q
, 
uiff: uiff(P;Q)
, 
all: ∀x:A. B[x]
, 
so_apply: x[s]
, 
so_lambda: λ2x.t[x]
, 
subtype_rel: A ⊆r B
, 
implies: P 
⇒ Q
, 
iff: P 
⇐⇒ Q
, 
rev_uimplies: rev_uimplies(P;Q)
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
le: A ≤ B
, 
not: ¬A
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
top: Top
, 
prop: ℙ
, 
nat: ℕ
, 
bag-no-repeats: bag-no-repeats(T;bs)
, 
squash: ↓T
, 
bag: bag(T)
, 
quotient: x,y:A//B[x; y]
, 
sq_type: SQType(T)
, 
guard: {T}
, 
true: True
, 
istype: istype(T)
, 
bag-filter: [x∈b|p[x]]
, 
bag-sum: bag-sum(ba;x.f[x])
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
cons: [a / b]
, 
less_than: a < b
, 
less_than': less_than'(a;b)
, 
cand: A c∧ B
, 
rev_implies: P 
⇐ Q
, 
bag-size: #(bs)
, 
ge: i ≥ j 
, 
deq: EqDecider(T)
, 
colength: colength(L)
, 
nil: []
, 
it: ⋅
, 
bool: 𝔹
, 
unit: Unit
, 
btrue: tt
, 
ifthenelse: if b then t else f fi 
, 
eqof: eqof(d)
, 
bfalse: ff
, 
bnot: ¬bb
, 
assert: ↑b
, 
nat_plus: ℕ+
Lemmas referenced : 
bag-no-repeats-count, 
iff_weakening_uiff, 
bag-no-repeats_wf, 
uall_wf, 
uiff_wf, 
le_wf, 
bag-count_wf, 
equal-wf-T-base, 
istype-universe, 
bag-combine_wf, 
decidable__equal_int, 
decidable__lt, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformless_wf, 
itermConstant_wf, 
itermVar_wf, 
intformeq_wf, 
intformle_wf, 
istype-int, 
int_formula_prop_and_lemma, 
istype-void, 
int_formula_prop_not_lemma, 
int_formula_prop_less_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_eq_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_wf, 
bag-count-combine, 
bag-sum-count, 
decidable__le, 
le_witness_for_triv, 
set_subtype_base, 
int_subtype_base, 
bag-member_wf, 
bag_wf, 
deq_wf, 
list_wf, 
permutation_wf, 
permutation_weakening, 
equal_wf, 
subtype_base_sq, 
list-subtype-bag, 
filter_wf5, 
l_member_wf, 
le_int_wf, 
list-cases, 
list_accum_nil_lemma, 
product_subtype_list, 
list_accum_cons_lemma, 
less_than_wf, 
add-is-int-iff, 
itermAdd_wf, 
int_term_value_add_lemma, 
false_wf, 
list_accum_wf, 
length_wf_nat, 
nat_wf, 
cons_member, 
cons_wf, 
member_filter, 
assert_of_le_int, 
bag-member-count, 
list-member-bag-member, 
subtype_rel_dep_function, 
bool_wf, 
bag-count-sqequal, 
nat_properties, 
ge_wf, 
member-less_than, 
filter_nil_lemma, 
length_of_nil_lemma, 
colength-cons-not-zero, 
colength_wf_list, 
istype-false, 
length_wf, 
subtract-1-ge-0, 
spread_cons_lemma, 
subtract_wf, 
itermSubtract_wf, 
int_term_value_subtract_lemma, 
filter_cons_lemma, 
null_nil_lemma, 
btrue_wf, 
null_wf3, 
subtype_rel_list, 
top_wf, 
null_cons_lemma, 
bfalse_wf, 
btrue_neq_bfalse, 
eqtt_to_assert, 
safe-assert-deq, 
length_of_cons_lemma, 
eqff_to_assert, 
bool_cases_sqequal, 
bool_subtype_base, 
assert-bnot, 
assert_wf, 
reduce_hd_cons_lemma, 
hd_wf, 
squash_wf, 
length_cons_ge_one, 
eqof_wf, 
reduce_tl_cons_lemma, 
tl_wf, 
nil_wf, 
add_nat_plus, 
nat_plus_properties, 
true_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
sqequalHypSubstitution, 
productElimination, 
thin, 
extract_by_obid, 
isectElimination, 
hypothesisEquality, 
hypothesis, 
independent_isectElimination, 
lambdaFormation_alt, 
dependent_functionElimination, 
applyEquality, 
sqequalRule, 
lambdaEquality_alt, 
natural_numberEquality, 
because_Cache, 
independent_functionElimination, 
independent_pairFormation, 
unionElimination, 
approximateComputation, 
dependent_pairFormation_alt, 
int_eqEquality, 
isect_memberEquality_alt, 
voidElimination, 
universeIsType, 
equalityTransitivity, 
equalitySymmetry, 
equalityIsType4, 
intEquality, 
baseClosed, 
independent_pairEquality, 
axiomEquality, 
imageElimination, 
imageMemberEquality, 
productIsType, 
functionIsType, 
inhabitedIsType, 
equalityIsType1, 
universeEquality, 
promote_hyp, 
pointwiseFunctionality, 
pertypeElimination, 
instantiate, 
cumulativity, 
isectIsType, 
setElimination, 
rename, 
closedConclusion, 
setIsType, 
hypothesis_subsumption, 
addEquality, 
baseApply, 
dependent_set_memberEquality_alt, 
inlFormation_alt, 
inrFormation_alt, 
hyp_replacement, 
applyLambdaEquality, 
productEquality, 
functionEquality, 
setEquality, 
intWeakElimination, 
functionIsTypeImplies, 
equalityIsType3, 
equalityIsType2, 
equalityElimination
Latex:
\mforall{}[T1,T2:Type].  \mforall{}[f:T1  {}\mrightarrow{}  bag(T2)].  \mforall{}[eq1:EqDecider(T1)].  \mforall{}[eq2:EqDecider(T2)].  \mforall{}[bs:bag(T1)].
    (bag-no-repeats(T2;\mcup{}x\mmember{}bs.f[x]))  supposing 
          (bag-no-repeats(T1;bs)  and 
          ((\mforall{}x,y:T1.  \mforall{}z:T2.    (z  \mdownarrow{}\mmember{}  f[x]  {}\mRightarrow{}  z  \mdownarrow{}\mmember{}  f[y]  {}\mRightarrow{}  (x  =  y)))  \mwedge{}  (\mforall{}x:T1.  bag-no-repeats(T2;f[x]))))
Date html generated:
2019_10_16-AM-11_30_31
Last ObjectModification:
2018_10_11-PM-03_22_09
Theory : bags_2
Home
Index