Nuprl Lemma : bag-member-count

[T:Type]. ∀[eq:EqDecider(T)]. ∀[x:T]. ∀[bs:bag(T)].  uiff(x ↓∈ bs;1 ≤ (#x in bs))


Proof




Definitions occuring in Statement :  bag-count: (#x in bs) bag-member: x ↓∈ bs bag: bag(T) deq: EqDecider(T) uiff: uiff(P;Q) uall: [x:A]. B[x] le: A ≤ B natural_number: $n universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a le: A ≤ B not: ¬A implies:  Q false: False deq: EqDecider(T) prop: so_lambda: λ2x.t[x] so_apply: x[s] subtype_rel: A ⊆B bag-member: x ↓∈ bs squash: T nat: sq_stable: SqStable(P) exists: x:A. B[x] bag-filter: [x∈b|p[x]] bag-size: #(bs) all: x:A. B[x] or: P ∨ Q assert: b ifthenelse: if then else fi  btrue: tt true: True l_member: (x ∈ l) int_seg: {i..j-} lelt: i ≤ j < k eqof: eqof(d) ge: i ≥  cand: c∧ B decidable: Dec(P) satisfiable_int_formula: satisfiable_int_formula(fmla) top: Top rev_uimplies: rev_uimplies(P;Q) cons: [a b] bfalse: ff guard: {T} less_than: a < b bag: bag(T) so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] quotient: x,y:A//B[x; y] less_than': less_than'(a;b) sq_type: SQType(T)
Lemmas referenced :  bag-count-sqequal less_than'_wf bag-size_wf assert_wf bag-filter_wf bag-member_wf le_wf bag-count_wf nat_wf bag_wf deq_wf sq_stable__le filter_is_empty filter_wf5 l_member_wf list_wf list-cases null_nil_lemma length_of_nil_lemma lelt_wf length_wf safe-assert-deq select_wf nat_properties decidable__le satisfiable-full-omega-tt intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf product_subtype_list null_cons_lemma length_of_cons_lemma non_neg_length itermAdd_wf int_term_value_add_lemma uiff_wf null_wf3 subtype_rel_list top_wf uall_wf int_seg_wf not_wf int_seg_properties decidable__lt intformless_wf int_formula_prop_less_lemma equal_wf permutation_wf permutation_weakening quotient-member-eq permutation-equiv list-subtype-bag equal-wf-base member_wf squash_wf true_wf decidable__exists_int_seg decidable__assert int_seg_subtype_nat false_wf less_than_wf subtype_base_sq set_subtype_base int_subtype_base decidable__equal_int intformeq_wf int_formula_prop_eq_lemma
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity cut introduction extract_by_obid sqequalHypSubstitution sqequalTransitivity computationStep isectElimination thin because_Cache hypothesisEquality hypothesis independent_pairFormation isect_memberFormation productElimination independent_pairEquality lambdaEquality dependent_functionElimination voidElimination setEquality cumulativity applyEquality setElimination rename natural_numberEquality axiomEquality equalityTransitivity equalitySymmetry imageElimination imageMemberEquality baseClosed universeEquality isect_memberEquality independent_functionElimination hyp_replacement applyLambdaEquality lambdaFormation unionElimination independent_isectElimination dependent_set_memberEquality dependent_pairFormation int_eqEquality intEquality voidEquality computeAll promote_hyp hypothesis_subsumption functionEquality instantiate pointwiseFunctionality pertypeElimination productEquality

Latex:
\mforall{}[T:Type].  \mforall{}[eq:EqDecider(T)].  \mforall{}[x:T].  \mforall{}[bs:bag(T)].    uiff(x  \mdownarrow{}\mmember{}  bs;1  \mleq{}  (\#x  in  bs))



Date html generated: 2018_05_21-PM-09_46_00
Last ObjectModification: 2017_07_26-PM-06_29_54

Theory : bags_2


Home Index