Nuprl Lemma : bag-member-count
∀[T:Type]. ∀[eq:EqDecider(T)]. ∀[x:T]. ∀[bs:bag(T)].  uiff(x ↓∈ bs;1 ≤ (#x in bs))
Proof
Definitions occuring in Statement : 
bag-count: (#x in bs), 
bag-member: x ↓∈ bs, 
bag: bag(T), 
deq: EqDecider(T), 
uiff: uiff(P;Q), 
uall: ∀[x:A]. B[x], 
le: A ≤ B, 
natural_number: $n, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
uiff: uiff(P;Q), 
and: P ∧ Q, 
uimplies: b supposing a, 
le: A ≤ B, 
not: ¬A, 
implies: P ⇒ Q, 
false: False, 
deq: EqDecider(T), 
prop: ℙ, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
subtype_rel: A ⊆r B, 
bag-member: x ↓∈ bs, 
squash: ↓T, 
nat: ℕ, 
sq_stable: SqStable(P), 
exists: ∃x:A. B[x], 
bag-filter: [x∈b|p[x]], 
bag-size: #(bs), 
all: ∀x:A. B[x], 
or: P ∨ Q, 
assert: ↑b, 
ifthenelse: if b then t else f fi , 
btrue: tt, 
true: True, 
l_member: (x ∈ l), 
int_seg: {i..j-}, 
lelt: i ≤ j < k, 
eqof: eqof(d), 
ge: i ≥ j , 
cand: A c∧ B, 
decidable: Dec(P), 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
top: Top, 
rev_uimplies: rev_uimplies(P;Q), 
cons: [a / b], 
bfalse: ff, 
guard: {T}, 
less_than: a < b, 
bag: bag(T), 
so_lambda: λ2x y.t[x; y], 
so_apply: x[s1;s2], 
quotient: x,y:A//B[x; y], 
less_than': less_than'(a;b), 
sq_type: SQType(T)
Lemmas referenced : 
bag-count-sqequal, 
less_than'_wf, 
bag-size_wf, 
assert_wf, 
bag-filter_wf, 
bag-member_wf, 
le_wf, 
bag-count_wf, 
nat_wf, 
bag_wf, 
deq_wf, 
sq_stable__le, 
filter_is_empty, 
filter_wf5, 
l_member_wf, 
list_wf, 
list-cases, 
null_nil_lemma, 
length_of_nil_lemma, 
lelt_wf, 
length_wf, 
safe-assert-deq, 
select_wf, 
nat_properties, 
decidable__le, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
product_subtype_list, 
null_cons_lemma, 
length_of_cons_lemma, 
non_neg_length, 
itermAdd_wf, 
int_term_value_add_lemma, 
uiff_wf, 
null_wf3, 
subtype_rel_list, 
top_wf, 
uall_wf, 
int_seg_wf, 
not_wf, 
int_seg_properties, 
decidable__lt, 
intformless_wf, 
int_formula_prop_less_lemma, 
equal_wf, 
permutation_wf, 
permutation_weakening, 
quotient-member-eq, 
permutation-equiv, 
list-subtype-bag, 
equal-wf-base, 
member_wf, 
squash_wf, 
true_wf, 
decidable__exists_int_seg, 
decidable__assert, 
int_seg_subtype_nat, 
false_wf, 
less_than_wf, 
subtype_base_sq, 
set_subtype_base, 
int_subtype_base, 
decidable__equal_int, 
intformeq_wf, 
int_formula_prop_eq_lemma
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
sqequalTransitivity, 
computationStep, 
isectElimination, 
thin, 
because_Cache, 
hypothesisEquality, 
hypothesis, 
independent_pairFormation, 
isect_memberFormation, 
productElimination, 
independent_pairEquality, 
lambdaEquality, 
dependent_functionElimination, 
voidElimination, 
setEquality, 
cumulativity, 
applyEquality, 
setElimination, 
rename, 
natural_numberEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
imageElimination, 
imageMemberEquality, 
baseClosed, 
universeEquality, 
isect_memberEquality, 
independent_functionElimination, 
hyp_replacement, 
applyLambdaEquality, 
lambdaFormation, 
unionElimination, 
independent_isectElimination, 
dependent_set_memberEquality, 
dependent_pairFormation, 
int_eqEquality, 
intEquality, 
voidEquality, 
computeAll, 
promote_hyp, 
hypothesis_subsumption, 
functionEquality, 
instantiate, 
pointwiseFunctionality, 
pertypeElimination, 
productEquality
Latex:
\mforall{}[T:Type].  \mforall{}[eq:EqDecider(T)].  \mforall{}[x:T].  \mforall{}[bs:bag(T)].    uiff(x  \mdownarrow{}\mmember{}  bs;1  \mleq{}  (\#x  in  bs))
Date html generated:
2018_05_21-PM-09_46_00
Last ObjectModification:
2017_07_26-PM-06_29_54
Theory : bags_2
Home
Index