Nuprl Lemma : bag-no-repeats-count
∀[T:Type]. ∀[eq:EqDecider(T)]. ∀[bs:bag(T)].  uiff(bag-no-repeats(T;bs);∀[x:T]. uiff(1 ≤ (#x in bs);(#x in bs) = 1 ∈ ℤ))
Proof
Definitions occuring in Statement : 
bag-count: (#x in bs)
, 
bag-no-repeats: bag-no-repeats(T;bs)
, 
bag: bag(T)
, 
deq: EqDecider(T)
, 
uiff: uiff(P;Q)
, 
uall: ∀[x:A]. B[x]
, 
le: A ≤ B
, 
natural_number: $n
, 
int: ℤ
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
uimplies: b supposing a
, 
subtype_rel: A ⊆r B
, 
nat: ℕ
, 
all: ∀x:A. B[x]
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
prop: ℙ
, 
le: A ≤ B
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
bag-no-repeats: bag-no-repeats(T;bs)
, 
squash: ↓T
, 
deq: EqDecider(T)
, 
bag-filter: [x∈b|p[x]]
, 
bag-size: #(bs)
, 
guard: {T}
, 
istype: istype(T)
, 
cand: A c∧ B
, 
bag-count: (#x in bs)
, 
top: Top
, 
true: True
Lemmas referenced : 
istype-le, 
bag-count_wf, 
decidable__le, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
intformeq_wf, 
istype-int, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_eq_lemma, 
int_formula_prop_wf, 
le_witness_for_triv, 
set_subtype_base, 
le_wf, 
int_subtype_base, 
bag-no-repeats_wf, 
bag_wf, 
deq_wf, 
istype-universe, 
bag-count-sqequal, 
bag-size_wf, 
assert_wf, 
bag-filter_wf, 
equal-wf-base, 
no-repeats-iff-count, 
filter_functionality, 
eta_conv, 
bool_wf, 
filter_wf5, 
subtype_rel_dep_function, 
l_member_wf, 
length_wf, 
length_wf_nat, 
list_wf, 
exists_wf, 
squash_wf, 
no_repeats_wf, 
equal_wf, 
list-subtype-bag, 
equal-wf-T-base, 
nat_wf, 
uiff_wf, 
uall_wf, 
bag_to_squash_list, 
less_than'_wf, 
satisfiable-full-omega-tt, 
set_wf, 
subtype_rel_self, 
true_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
independent_pairFormation, 
hypothesis, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
natural_numberEquality, 
hypothesisEquality, 
applyEquality, 
lambdaEquality_alt, 
setElimination, 
rename, 
inhabitedIsType, 
equalityTransitivity, 
equalitySymmetry, 
sqequalRule, 
dependent_functionElimination, 
because_Cache, 
unionElimination, 
independent_isectElimination, 
approximateComputation, 
independent_functionElimination, 
dependent_pairFormation_alt, 
int_eqEquality, 
Error :memTop, 
universeIsType, 
voidElimination, 
productElimination, 
equalityIstype, 
intEquality, 
baseClosed, 
sqequalBase, 
independent_pairEquality, 
isect_memberEquality_alt, 
axiomEquality, 
isectIsTypeImplies, 
imageElimination, 
imageMemberEquality, 
isectIsType, 
productIsType, 
instantiate, 
universeEquality, 
promote_hyp, 
hyp_replacement, 
applyLambdaEquality, 
setEquality, 
setIsType, 
lambdaFormation_alt, 
isect_memberFormation, 
productEquality, 
dependent_pairFormation, 
lambdaEquality, 
cumulativity, 
computeAll, 
voidEquality, 
isect_memberEquality, 
lambdaFormation
Latex:
\mforall{}[T:Type].  \mforall{}[eq:EqDecider(T)].  \mforall{}[bs:bag(T)].
    uiff(bag-no-repeats(T;bs);\mforall{}[x:T].  uiff(1  \mleq{}  (\#x  in  bs);(\#x  in  bs)  =  1))
Date html generated:
2020_05_20-AM-09_04_13
Last ObjectModification:
2020_01_04-PM-10_27_42
Theory : bags_2
Home
Index