Nuprl Lemma : bag-no-repeats-count

[T:Type]. ∀[eq:EqDecider(T)]. ∀[bs:bag(T)].  uiff(bag-no-repeats(T;bs);∀[x:T]. uiff(1 ≤ (#x in bs);(#x in bs) 1 ∈ ℤ))


Proof




Definitions occuring in Statement :  bag-count: (#x in bs) bag-no-repeats: bag-no-repeats(T;bs) bag: bag(T) deq: EqDecider(T) uiff: uiff(P;Q) uall: [x:A]. B[x] le: A ≤ B natural_number: $n int: universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a subtype_rel: A ⊆B nat: all: x:A. B[x] decidable: Dec(P) or: P ∨ Q not: ¬A implies:  Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False prop: le: A ≤ B so_lambda: λ2x.t[x] so_apply: x[s] bag-no-repeats: bag-no-repeats(T;bs) squash: T deq: EqDecider(T) bag-filter: [x∈b|p[x]] bag-size: #(bs) guard: {T} istype: istype(T) cand: c∧ B bag-count: (#x in bs) top: Top true: True
Lemmas referenced :  istype-le bag-count_wf decidable__le full-omega-unsat intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf intformeq_wf istype-int int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_eq_lemma int_formula_prop_wf le_witness_for_triv set_subtype_base le_wf int_subtype_base bag-no-repeats_wf bag_wf deq_wf istype-universe bag-count-sqequal bag-size_wf assert_wf bag-filter_wf equal-wf-base no-repeats-iff-count filter_functionality eta_conv bool_wf filter_wf5 subtype_rel_dep_function l_member_wf length_wf length_wf_nat list_wf exists_wf squash_wf no_repeats_wf equal_wf list-subtype-bag equal-wf-T-base nat_wf uiff_wf uall_wf bag_to_squash_list less_than'_wf satisfiable-full-omega-tt set_wf subtype_rel_self true_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut independent_pairFormation hypothesis extract_by_obid sqequalHypSubstitution isectElimination thin natural_numberEquality hypothesisEquality applyEquality lambdaEquality_alt setElimination rename inhabitedIsType equalityTransitivity equalitySymmetry sqequalRule dependent_functionElimination because_Cache unionElimination independent_isectElimination approximateComputation independent_functionElimination dependent_pairFormation_alt int_eqEquality Error :memTop,  universeIsType voidElimination productElimination equalityIstype intEquality baseClosed sqequalBase independent_pairEquality isect_memberEquality_alt axiomEquality isectIsTypeImplies imageElimination imageMemberEquality isectIsType productIsType instantiate universeEquality promote_hyp hyp_replacement applyLambdaEquality setEquality setIsType lambdaFormation_alt isect_memberFormation productEquality dependent_pairFormation lambdaEquality cumulativity computeAll voidEquality isect_memberEquality lambdaFormation

Latex:
\mforall{}[T:Type].  \mforall{}[eq:EqDecider(T)].  \mforall{}[bs:bag(T)].
    uiff(bag-no-repeats(T;bs);\mforall{}[x:T].  uiff(1  \mleq{}  (\#x  in  bs);(\#x  in  bs)  =  1))



Date html generated: 2020_05_20-AM-09_04_13
Last ObjectModification: 2020_01_04-PM-10_27_42

Theory : bags_2


Home Index