Nuprl Lemma : fps-add-comm

[X:Type]. ∀[r:CRng]. ∀[f,g:PowerSeries(X;r)].  ((f+g) (g+f) ∈ PowerSeries(X;r))


Proof




Definitions occuring in Statement :  fps-add: (f+g) power-series: PowerSeries(X;r) uall: [x:A]. B[x] universe: Type equal: t ∈ T crng: CRng
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T crng: CRng comm: Comm(T;op) uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a all: x:A. B[x] fps-add: (f+g) fps-coeff: f[b] power-series: PowerSeries(X;r) infix_ap: y
Lemmas referenced :  rng_plus_comm fps-ext fps-add_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution isectElimination thin setElimination rename hypothesisEquality hypothesis productElimination independent_isectElimination lambdaFormation sqequalRule applyEquality because_Cache isect_memberEquality axiomEquality

Latex:
\mforall{}[X:Type].  \mforall{}[r:CRng].  \mforall{}[f,g:PowerSeries(X;r)].    ((f+g)  =  (g+f))



Date html generated: 2016_05_15-PM-09_47_51
Last ObjectModification: 2015_12_27-PM-04_40_47

Theory : power!series


Home Index