Nuprl Lemma : bag-summation-is-zero

[T,R:Type]. ∀[add:R ⟶ R ⟶ R]. ∀[zero:R]. ∀[b:bag(T)]. ∀[f:T ⟶ R].
  Σ(x∈b). f[x] zero ∈ supposing (∀x:T. (x ↓∈  (f[x] zero ∈ R))) ∧ IsMonoid(R;add;zero) ∧ Comm(R;add)


Proof




Definitions occuring in Statement :  bag-member: x ↓∈ bs bag-summation: Σ(x∈b). f[x] bag: bag(T) comm: Comm(T;op) uimplies: supposing a uall: [x:A]. B[x] so_apply: x[s] all: x:A. B[x] implies:  Q and: P ∧ Q function: x:A ⟶ B[x] universe: Type equal: t ∈ T monoid_p: IsMonoid(T;op;id)
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a and: P ∧ Q so_lambda: λ2x.t[x] so_apply: x[s] cand: c∧ B squash: T prop: true: True subtype_rel: A ⊆B guard: {T} iff: ⇐⇒ Q implies:  Q all: x:A. B[x]
Lemmas referenced :  bag-summation-equal equal_wf squash_wf true_wf bag-summation-zero iff_weakening_equal all_wf bag-member_wf monoid_p_wf comm_wf bag_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalHypSubstitution productElimination thin extract_by_obid isectElimination hypothesisEquality because_Cache hypothesis sqequalRule lambdaEquality applyEquality functionExtensionality cumulativity independent_isectElimination independent_pairFormation imageElimination equalityTransitivity equalitySymmetry natural_numberEquality imageMemberEquality baseClosed universeEquality independent_functionElimination productEquality functionEquality isect_memberEquality axiomEquality

Latex:
\mforall{}[T,R:Type].  \mforall{}[add:R  {}\mrightarrow{}  R  {}\mrightarrow{}  R].  \mforall{}[zero:R].  \mforall{}[b:bag(T)].  \mforall{}[f:T  {}\mrightarrow{}  R].
    \mSigma{}(x\mmember{}b).  f[x]  =  zero 
    supposing  (\mforall{}x:T.  (x  \mdownarrow{}\mmember{}  b  {}\mRightarrow{}  (f[x]  =  zero)))  \mwedge{}  IsMonoid(R;add;zero)  \mwedge{}  Comm(R;add)



Date html generated: 2017_10_01-AM-09_01_43
Last ObjectModification: 2017_07_26-PM-04_43_05

Theory : bags


Home Index