Nuprl Lemma : bag-summation-is-zero
∀[T,R:Type]. ∀[add:R ⟶ R ⟶ R]. ∀[zero:R]. ∀[b:bag(T)]. ∀[f:T ⟶ R].
Σ(x∈b). f[x] = zero ∈ R supposing (∀x:T. (x ↓∈ b
⇒ (f[x] = zero ∈ R))) ∧ IsMonoid(R;add;zero) ∧ Comm(R;add)
Proof
Definitions occuring in Statement :
bag-member: x ↓∈ bs
,
bag-summation: Σ(x∈b). f[x]
,
bag: bag(T)
,
comm: Comm(T;op)
,
uimplies: b supposing a
,
uall: ∀[x:A]. B[x]
,
so_apply: x[s]
,
all: ∀x:A. B[x]
,
implies: P
⇒ Q
,
and: P ∧ Q
,
function: x:A ⟶ B[x]
,
universe: Type
,
equal: s = t ∈ T
,
monoid_p: IsMonoid(T;op;id)
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
uimplies: b supposing a
,
and: P ∧ Q
,
so_lambda: λ2x.t[x]
,
so_apply: x[s]
,
cand: A c∧ B
,
squash: ↓T
,
prop: ℙ
,
true: True
,
subtype_rel: A ⊆r B
,
guard: {T}
,
iff: P
⇐⇒ Q
,
implies: P
⇒ Q
,
all: ∀x:A. B[x]
Lemmas referenced :
bag-summation-equal,
equal_wf,
squash_wf,
true_wf,
bag-summation-zero,
iff_weakening_equal,
all_wf,
bag-member_wf,
monoid_p_wf,
comm_wf,
bag_wf
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation,
introduction,
cut,
sqequalHypSubstitution,
productElimination,
thin,
extract_by_obid,
isectElimination,
hypothesisEquality,
because_Cache,
hypothesis,
sqequalRule,
lambdaEquality,
applyEquality,
functionExtensionality,
cumulativity,
independent_isectElimination,
independent_pairFormation,
imageElimination,
equalityTransitivity,
equalitySymmetry,
natural_numberEquality,
imageMemberEquality,
baseClosed,
universeEquality,
independent_functionElimination,
productEquality,
functionEquality,
isect_memberEquality,
axiomEquality
Latex:
\mforall{}[T,R:Type]. \mforall{}[add:R {}\mrightarrow{} R {}\mrightarrow{} R]. \mforall{}[zero:R]. \mforall{}[b:bag(T)]. \mforall{}[f:T {}\mrightarrow{} R].
\mSigma{}(x\mmember{}b). f[x] = zero
supposing (\mforall{}x:T. (x \mdownarrow{}\mmember{} b {}\mRightarrow{} (f[x] = zero))) \mwedge{} IsMonoid(R;add;zero) \mwedge{} Comm(R;add)
Date html generated:
2017_10_01-AM-09_01_43
Last ObjectModification:
2017_07_26-PM-04_43_05
Theory : bags
Home
Index