Nuprl Lemma : bag-append-ident

[T:Type]. ∀[as:bag(T)].  (((as {}) as ∈ bag(T)) ∧ (({} as) as ∈ bag(T)))


Proof




Definitions occuring in Statement :  bag-append: as bs empty-bag: {} bag: bag(T) uall: [x:A]. B[x] and: P ∧ Q universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T and: P ∧ Q cand: c∧ B subtype_rel: A ⊆B all: x:A. B[x] squash: T prop: true: True uimplies: supposing a guard: {T} iff: ⇐⇒ Q rev_implies:  Q implies:  Q
Lemmas referenced :  bag-append-empty bag-subtype-list equal_wf squash_wf true_wf bag_wf bag-append-comm empty-bag_wf iff_weakening_equal
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality applyEquality dependent_functionElimination hypothesis independent_pairFormation lambdaEquality imageElimination equalityTransitivity equalitySymmetry universeEquality cumulativity because_Cache natural_numberEquality imageMemberEquality baseClosed independent_isectElimination productElimination independent_functionElimination independent_pairEquality axiomEquality isect_memberEquality

Latex:
\mforall{}[T:Type].  \mforall{}[as:bag(T)].    (((as  +  \{\})  =  as)  \mwedge{}  ((\{\}  +  as)  =  as))



Date html generated: 2017_10_01-AM-08_45_04
Last ObjectModification: 2017_07_26-PM-04_30_32

Theory : bags


Home Index