Nuprl Lemma : bag-summation-add

[T,R:Type]. ∀[add:R ⟶ R ⟶ R]. ∀[zero:R]. ∀[f,g:T ⟶ R]. ∀[b:bag(T)].
  Σ(x∈b). f[x] add g[x] (x∈b). f[x] add Σ(x∈b). g[x]) ∈ supposing IsMonoid(R;add;zero) ∧ Comm(R;add)


Proof




Definitions occuring in Statement :  bag-summation: Σ(x∈b). f[x] bag: bag(T) comm: Comm(T;op) uimplies: supposing a uall: [x:A]. B[x] infix_ap: y so_apply: x[s] and: P ∧ Q function: x:A ⟶ B[x] universe: Type equal: t ∈ T monoid_p: IsMonoid(T;op;id)
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a and: P ∧ Q prop: bag: bag(T) quotient: x,y:A//B[x; y] all: x:A. B[x] implies:  Q so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] guard: {T} so_lambda: λ2x.t[x] so_apply: x[s] subtype_rel: A ⊆B cand: c∧ B monoid_p: IsMonoid(T;op;id) bag-summation: Σ(x∈b). f[x] bag-accum: bag-accum(v,x.f[v; x];init;bs) top: Top infix_ap: y assoc: Assoc(T;op) true: True squash: T iff: ⇐⇒ Q rev_implies:  Q comm: Comm(T;op) ident: Ident(T;op;id)
Lemmas referenced :  monoid_p_wf comm_wf bag_wf list_wf quotient-member-eq permutation_wf permutation-equiv permutation_inversion equal_wf bag-summation_wf infix_ap_wf list-subtype-bag equal-wf-base list_induction all_wf list_accum_wf list_accum_nil_lemma list_accum_cons_lemma squash_wf true_wf iff_weakening_equal
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalHypSubstitution productElimination thin hypothesis productEquality extract_by_obid isectElimination cumulativity hypothesisEquality functionExtensionality applyEquality sqequalRule isect_memberEquality axiomEquality because_Cache equalityTransitivity equalitySymmetry functionEquality universeEquality pointwiseFunctionalityForEquality pertypeElimination lambdaFormation rename lambdaEquality independent_isectElimination dependent_functionElimination independent_functionElimination hyp_replacement applyLambdaEquality independent_pairFormation voidElimination voidEquality natural_numberEquality imageElimination imageMemberEquality baseClosed

Latex:
\mforall{}[T,R:Type].  \mforall{}[add:R  {}\mrightarrow{}  R  {}\mrightarrow{}  R].  \mforall{}[zero:R].  \mforall{}[f,g:T  {}\mrightarrow{}  R].  \mforall{}[b:bag(T)].
    \mSigma{}(x\mmember{}b).  f[x]  add  g[x]  =  (\mSigma{}(x\mmember{}b).  f[x]  add  \mSigma{}(x\mmember{}b).  g[x]) 
    supposing  IsMonoid(R;add;zero)  \mwedge{}  Comm(R;add)



Date html generated: 2017_10_01-AM-08_50_33
Last ObjectModification: 2017_07_26-PM-04_32_50

Theory : bags


Home Index