Nuprl Lemma : mul_ac_1_fps

[X:Type]
  ∀[eq:EqDecider(X)]. ∀[r:CRng]. ∀[a,b,c:PowerSeries(X;r)].  ((a*(b*c)) (b*(a*c)) ∈ PowerSeries(X;r)) 
  supposing valueall-type(X)


Proof




Definitions occuring in Statement :  fps-mul: (f*g) power-series: PowerSeries(X;r) deq: EqDecider(T) valueall-type: valueall-type(T) uimplies: supposing a uall: [x:A]. B[x] universe: Type equal: t ∈ T crng: CRng
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a fps-rng: fps-rng(r) rng_car: |r| pi1: fst(t) rng_times: * pi2: snd(t) infix_ap: y
Lemmas referenced :  crng_times_ac_1 fps-rng_wf crng_wf deq_wf valueall-type_wf istype-universe
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality independent_isectElimination hypothesis sqequalRule isect_memberEquality_alt axiomEquality isectIsTypeImplies inhabitedIsType universeIsType instantiate universeEquality

Latex:
\mforall{}[X:Type]
    \mforall{}[eq:EqDecider(X)].  \mforall{}[r:CRng].  \mforall{}[a,b,c:PowerSeries(X;r)].    ((a*(b*c))  =  (b*(a*c))) 
    supposing  valueall-type(X)



Date html generated: 2020_05_20-AM-09_05_40
Last ObjectModification: 2020_01_27-PM-04_05_18

Theory : power!series


Home Index