Nuprl Lemma : bag-deq-member-bag-diff
∀[T:Type]. ∀eq:EqDecider(T). ∀x:T. ∀bs:bag(T).  (bag-deq-member(eq;x;bs) ~ isl(bag-diff(eq;bs;{x})))
Proof
Definitions occuring in Statement : 
bag-diff: bag-diff(eq;bs;as)
, 
bag-deq-member: bag-deq-member(eq;x;b)
, 
single-bag: {x}
, 
bag: bag(T)
, 
deq: EqDecider(T)
, 
isl: isl(x)
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
universe: Type
, 
sqequal: s ~ t
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
all: ∀x:A. B[x]
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
uimplies: b supposing a
, 
iff: P 
⇐⇒ Q
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
rev_implies: P 
⇐ Q
, 
sq_type: SQType(T)
, 
guard: {T}
Lemmas referenced : 
bag-member-bag-diff, 
subtype_base_sq, 
bool_subtype_base, 
iff_imp_equal_bool, 
bag-deq-member_wf, 
isl_wf, 
bag_wf, 
unit_wf2, 
bag-diff_wf, 
single-bag_wf, 
bag-member_wf, 
assert_wf, 
assert-bag-deq-member, 
iff_wf, 
deq_wf
Rules used in proof : 
cut, 
lemma_by_obid, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
hypothesis, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
lambdaFormation, 
dependent_functionElimination, 
productElimination, 
instantiate, 
because_Cache, 
independent_isectElimination, 
independent_pairFormation, 
addLevel, 
impliesFunctionality, 
equalityTransitivity, 
equalitySymmetry, 
independent_functionElimination, 
universeEquality
Latex:
\mforall{}[T:Type].  \mforall{}eq:EqDecider(T).  \mforall{}x:T.  \mforall{}bs:bag(T).    (bag-deq-member(eq;x;bs)  \msim{}  isl(bag-diff(eq;bs;\{x\})))
Date html generated:
2016_05_15-PM-08_05_22
Last ObjectModification:
2015_12_27-PM-04_14_08
Theory : bags_2
Home
Index