Nuprl Lemma : assert-bag-deq-member

[A:Type]. ∀[eq:EqDecider(A)]. ∀[b:bag(A)]. ∀[x:A].  uiff(↑bag-deq-member(eq;x;b);x ↓∈ b)


Proof




Definitions occuring in Statement :  bag-deq-member: bag-deq-member(eq;x;b) bag-member: x ↓∈ bs bag: bag(T) deq: EqDecider(T) assert: b uiff: uiff(P;Q) uall: [x:A]. B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a bag: bag(T) implies:  Q prop: quotient: x,y:A//B[x; y] bag-deq-member: bag-deq-member(eq;x;b) bag-member: x ↓∈ bs squash: T exists: x:A. B[x] all: x:A. B[x] iff: ⇐⇒ Q cand: c∧ B subtype_rel: A ⊆B rev_implies:  Q
Lemmas referenced :  assert_wf bag-deq-member_wf bag-member_wf equal-wf-base list_wf permutation_wf assert_witness bag_wf deq_wf assert-deq-member list-subtype-bag equal_wf l_member_wf deq-member_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut independent_pairFormation thin sqequalHypSubstitution pointwiseFunctionalityForEquality functionEquality extract_by_obid isectElimination cumulativity hypothesisEquality sqequalRule hypothesis pertypeElimination productElimination lambdaEquality imageMemberEquality baseClosed because_Cache productEquality independent_functionElimination imageElimination independent_pairEquality isect_memberEquality equalityTransitivity equalitySymmetry universeEquality dependent_functionElimination dependent_pairFormation applyEquality independent_isectElimination hyp_replacement applyLambdaEquality

Latex:
\mforall{}[A:Type].  \mforall{}[eq:EqDecider(A)].  \mforall{}[b:bag(A)].  \mforall{}[x:A].    uiff(\muparrow{}bag-deq-member(eq;x;b);x  \mdownarrow{}\mmember{}  b)



Date html generated: 2018_05_21-PM-09_47_17
Last ObjectModification: 2017_07_26-PM-06_30_09

Theory : bags_2


Home Index