Nuprl Lemma : bag-member-bag-diff

[T:Type]. ∀eq:EqDecider(T). ∀x:T. ∀bs:bag(T).  uiff(x ↓∈ bs;↑isl(bag-diff(eq;bs;{x})))


Proof




Definitions occuring in Statement :  bag-diff: bag-diff(eq;bs;as) bag-member: x ↓∈ bs single-bag: {x} bag: bag(T) deq: EqDecider(T) assert: b isl: isl(x) uiff: uiff(P;Q) uall: [x:A]. B[x] all: x:A. B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] implies:  Q isl: isl(x) assert: b ifthenelse: if then else fi  btrue: tt uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a true: True prop: exists: x:A. B[x] squash: T bfalse: ff false: False so_lambda: λ2x.t[x] so_apply: x[s] iff: ⇐⇒ Q rev_implies:  Q bag-member: x ↓∈ bs not: ¬A
Lemmas referenced :  bag-diff-property single-bag_wf bag-diff_wf bag_wf unit_wf2 equal_wf bag-append_wf true_wf false_wf all_wf not_wf iff_weakening_uiff bag-member_wf squash_wf exists_wf bag-member-iff assert_witness isl_wf assert_wf uiff_wf deq_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lambdaFormation extract_by_obid sqequalHypSubstitution isectElimination thin because_Cache dependent_functionElimination hypothesisEquality cumulativity hypothesis unionEquality unionElimination sqequalRule independent_pairFormation natural_numberEquality axiomEquality equalityTransitivity equalitySymmetry dependent_pairFormation imageMemberEquality baseClosed imageElimination voidElimination lambdaEquality independent_functionElimination addLevel productElimination independent_isectElimination independent_pairEquality isect_memberEquality universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}eq:EqDecider(T).  \mforall{}x:T.  \mforall{}bs:bag(T).    uiff(x  \mdownarrow{}\mmember{}  bs;\muparrow{}isl(bag-diff(eq;bs;\{x\})))



Date html generated: 2018_05_21-PM-09_49_20
Last ObjectModification: 2017_07_26-PM-06_31_00

Theory : bags_2


Home Index