Nuprl Lemma : abmonoid_ac_1_fps

[X:Type]. ∀[r:CRng]. ∀[a,b,c:PowerSeries(X;r)].  ((a+(b+c)) (b+(a+c)) ∈ PowerSeries(X;r))


Proof




Definitions occuring in Statement :  fps-add: (f+g) power-series: PowerSeries(X;r) uall: [x:A]. B[x] universe: Type equal: t ∈ T crng: CRng
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T squash: T prop: true: True subtype_rel: A ⊆B uimplies: supposing a guard: {T} iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q implies:  Q
Lemmas referenced :  equal_wf squash_wf true_wf fps-add_wf fps-add-comm iff_weakening_equal fps-add-assoc
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut applyEquality thin lambdaEquality sqequalHypSubstitution imageElimination extract_by_obid isectElimination hypothesisEquality equalityTransitivity hypothesis equalitySymmetry because_Cache cumulativity natural_numberEquality sqequalRule imageMemberEquality baseClosed universeEquality independent_isectElimination productElimination independent_functionElimination isect_memberEquality axiomEquality

Latex:
\mforall{}[X:Type].  \mforall{}[r:CRng].  \mforall{}[a,b,c:PowerSeries(X;r)].    ((a+(b+c))  =  (b+(a+c)))



Date html generated: 2018_05_21-PM-09_56_48
Last ObjectModification: 2017_07_26-PM-06_33_06

Theory : power!series


Home Index