Nuprl Lemma : fps-div-property
∀[X:Type]
  ∀[eq:EqDecider(X)]. ∀[r:CRng]. ∀[f,g:PowerSeries(X;r)]. ∀[x:|r|].
    (g*(f÷g)) = f ∈ PowerSeries(X;r) supposing (g[{}] * x) = 1 ∈ |r| 
  supposing valueall-type(X)
Proof
Definitions occuring in Statement : 
fps-div: (f÷g)
, 
fps-mul: (f*g)
, 
fps-coeff: f[b]
, 
power-series: PowerSeries(X;r)
, 
empty-bag: {}
, 
deq: EqDecider(T)
, 
valueall-type: valueall-type(T)
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
infix_ap: x f y
, 
universe: Type
, 
equal: s = t ∈ T
, 
crng: CRng
, 
rng_one: 1
, 
rng_times: *
, 
rng_car: |r|
Definitions unfolded in proof : 
fps-div: (f÷g)
Lemmas referenced : 
fps-div-coeff-property
Rules used in proof : 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
hypothesis
Latex:
\mforall{}[X:Type]
    \mforall{}[eq:EqDecider(X)].  \mforall{}[r:CRng].  \mforall{}[f,g:PowerSeries(X;r)].  \mforall{}[x:|r|].
        (g*(f\mdiv{}g))  =  f  supposing  (g[\{\}]  *  x)  =  1 
    supposing  valueall-type(X)
Date html generated:
2016_05_15-PM-09_48_49
Last ObjectModification:
2015_12_27-PM-04_40_40
Theory : power!series
Home
Index