Nuprl Lemma : fps-div-property

[X:Type]
  ∀[eq:EqDecider(X)]. ∀[r:CRng]. ∀[f,g:PowerSeries(X;r)]. ∀[x:|r|].
    (g*(f÷g)) f ∈ PowerSeries(X;r) supposing (g[{}] x) 1 ∈ |r| 
  supposing valueall-type(X)


Proof




Definitions occuring in Statement :  fps-div: (f÷g) fps-mul: (f*g) fps-coeff: f[b] power-series: PowerSeries(X;r) empty-bag: {} deq: EqDecider(T) valueall-type: valueall-type(T) uimplies: supposing a uall: [x:A]. B[x] infix_ap: y universe: Type equal: t ∈ T crng: CRng rng_one: 1 rng_times: * rng_car: |r|
Definitions unfolded in proof :  fps-div: (f÷g)
Lemmas referenced :  fps-div-coeff-property
Rules used in proof :  cut lemma_by_obid sqequalHypSubstitution sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep hypothesis

Latex:
\mforall{}[X:Type]
    \mforall{}[eq:EqDecider(X)].  \mforall{}[r:CRng].  \mforall{}[f,g:PowerSeries(X;r)].  \mforall{}[x:|r|].
        (g*(f\mdiv{}g))  =  f  supposing  (g[\{\}]  *  x)  =  1 
    supposing  valueall-type(X)



Date html generated: 2016_05_15-PM-09_48_49
Last ObjectModification: 2015_12_27-PM-04_40_40

Theory : power!series


Home Index