Nuprl Lemma : fps-div-coeff-property
∀[X:Type]
  ∀[eq:EqDecider(X)]. ∀[r:CRng]. ∀[f,g:PowerSeries(X;r)]. ∀[x:|r|].
    (g*λb.fps-div-coeff(eq;r;f;g;x;b)) = f ∈ PowerSeries(X;r) supposing (g[{}] * x) = 1 ∈ |r| 
  supposing valueall-type(X)
Proof
Definitions occuring in Statement : 
fps-div-coeff: fps-div-coeff(eq;r;f;g;x;b), 
fps-mul: (f*g), 
fps-coeff: f[b], 
power-series: PowerSeries(X;r), 
empty-bag: {}, 
deq: EqDecider(T), 
valueall-type: valueall-type(T), 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
infix_ap: x f y, 
lambda: λx.A[x], 
universe: Type, 
equal: s = t ∈ T, 
crng: CRng, 
rng_one: 1, 
rng_times: *, 
rng_car: |r|
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
uimplies: b supposing a, 
crng: CRng, 
comm: Comm(T;op), 
rng: Rng, 
prop: ℙ, 
and: P ∧ Q, 
fps-mul: (f*g), 
power-series: PowerSeries(X;r), 
fps-coeff: f[b], 
infix_ap: x f y, 
fps-div-coeff: fps-div-coeff(eq;r;f;g;x;b), 
so_lambda: λ2x.t[x], 
pi1: fst(t), 
pi2: snd(t), 
so_apply: x[s], 
cand: A c∧ B, 
all: ∀x:A. B[x], 
top: Top, 
squash: ↓T, 
true: True, 
subtype_rel: A ⊆r B, 
guard: {T}, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
implies: P ⇒ Q, 
ring_p: IsRing(T;plus;zero;neg;times;one), 
group_p: IsGroup(T;op;id;inv), 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
uiff: uiff(P;Q), 
bnot: ¬bb, 
ifthenelse: if b then t else f fi , 
bfalse: ff, 
assert: ↑b, 
exists: ∃x:A. B[x], 
or: P ∨ Q, 
sq_type: SQType(T), 
false: False, 
not: ¬A
Lemmas referenced : 
rng_plus_comm, 
crng_properties, 
rng_properties, 
rng_all_properties, 
ring_p_wf, 
rng_car_wf, 
rng_plus_wf, 
rng_zero_wf, 
rng_minus_wf, 
rng_times_wf, 
rng_one_wf, 
bag_wf, 
equal_wf, 
fps-coeff_wf, 
empty-bag_wf, 
power-series_wf, 
crng_wf, 
deq_wf, 
valueall-type_wf, 
fps-div-coeff_wf, 
bag-summation_wf, 
bag-partitions_wf, 
infix_ap_wf, 
assert_wf, 
bnot_wf, 
bag-null_wf, 
pi1_wf_top, 
bag-filter_wf, 
bag-summation-single, 
squash_wf, 
true_wf, 
pi2_wf, 
iff_weakening_equal, 
and_wf, 
bag-summation-append, 
subtype_rel_bag, 
single-bag_wf, 
bag-split, 
bag-append_wf, 
empty_bag_append_lemma, 
bag-partitions-with-one-given, 
bag-eq_wf, 
bool_wf, 
eqtt_to_assert, 
assert-bag-null, 
iff_imp_equal_bool, 
btrue_wf, 
equal-wf-T-base, 
assert-bag-eq, 
iff_wf, 
eqff_to_assert, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
bfalse_wf, 
false_wf, 
rng_times_assoc, 
rng_times_over_plus, 
rng_times_over_minus, 
rng_times_one, 
rng_plus_ac_1, 
rng_plus_inv, 
rng_plus_zero
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
setElimination, 
rename, 
hypothesisEquality, 
hypothesis, 
dependent_set_memberEquality, 
productElimination, 
sqequalRule, 
functionExtensionality, 
applyEquality, 
because_Cache, 
cumulativity, 
isect_memberEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
universeEquality, 
independent_isectElimination, 
hyp_replacement, 
applyLambdaEquality, 
productEquality, 
lambdaEquality, 
independent_pairFormation, 
setEquality, 
dependent_functionElimination, 
lambdaFormation, 
independent_pairEquality, 
voidElimination, 
voidEquality, 
imageElimination, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
independent_functionElimination, 
instantiate, 
isectEquality, 
unionElimination, 
equalityElimination, 
addLevel, 
impliesFunctionality, 
dependent_pairFormation, 
promote_hyp
Latex:
\mforall{}[X:Type]
    \mforall{}[eq:EqDecider(X)].  \mforall{}[r:CRng].  \mforall{}[f,g:PowerSeries(X;r)].  \mforall{}[x:|r|].
        (g*\mlambda{}b.fps-div-coeff(eq;r;f;g;x;b))  =  f  supposing  (g[\{\}]  *  x)  =  1 
    supposing  valueall-type(X)
Date html generated:
2018_05_21-PM-09_55_37
Last ObjectModification:
2017_07_26-PM-06_32_44
Theory : power!series
Home
Index