Nuprl Lemma : fps-div-coeff-property

[X:Type]
  ∀[eq:EqDecider(X)]. ∀[r:CRng]. ∀[f,g:PowerSeries(X;r)]. ∀[x:|r|].
    (g*λb.fps-div-coeff(eq;r;f;g;x;b)) f ∈ PowerSeries(X;r) supposing (g[{}] x) 1 ∈ |r| 
  supposing valueall-type(X)


Proof




Definitions occuring in Statement :  fps-div-coeff: fps-div-coeff(eq;r;f;g;x;b) fps-mul: (f*g) fps-coeff: f[b] power-series: PowerSeries(X;r) empty-bag: {} deq: EqDecider(T) valueall-type: valueall-type(T) uimplies: supposing a uall: [x:A]. B[x] infix_ap: y lambda: λx.A[x] universe: Type equal: t ∈ T crng: CRng rng_one: 1 rng_times: * rng_car: |r|
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a crng: CRng comm: Comm(T;op) rng: Rng prop: and: P ∧ Q fps-mul: (f*g) power-series: PowerSeries(X;r) fps-coeff: f[b] infix_ap: y fps-div-coeff: fps-div-coeff(eq;r;f;g;x;b) so_lambda: λ2x.t[x] pi1: fst(t) pi2: snd(t) so_apply: x[s] cand: c∧ B all: x:A. B[x] top: Top squash: T true: True subtype_rel: A ⊆B guard: {T} iff: ⇐⇒ Q rev_implies:  Q implies:  Q ring_p: IsRing(T;plus;zero;neg;times;one) group_p: IsGroup(T;op;id;inv) bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) bnot: ¬bb ifthenelse: if then else fi  bfalse: ff assert: b exists: x:A. B[x] or: P ∨ Q sq_type: SQType(T) false: False not: ¬A
Lemmas referenced :  rng_plus_comm crng_properties rng_properties rng_all_properties ring_p_wf rng_car_wf rng_plus_wf rng_zero_wf rng_minus_wf rng_times_wf rng_one_wf bag_wf equal_wf fps-coeff_wf empty-bag_wf power-series_wf crng_wf deq_wf valueall-type_wf fps-div-coeff_wf bag-summation_wf bag-partitions_wf infix_ap_wf assert_wf bnot_wf bag-null_wf pi1_wf_top bag-filter_wf bag-summation-single squash_wf true_wf pi2_wf iff_weakening_equal and_wf bag-summation-append subtype_rel_bag single-bag_wf bag-split bag-append_wf empty_bag_append_lemma bag-partitions-with-one-given bag-eq_wf bool_wf eqtt_to_assert assert-bag-null iff_imp_equal_bool btrue_wf equal-wf-T-base assert-bag-eq iff_wf eqff_to_assert bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot bfalse_wf false_wf rng_times_assoc rng_times_over_plus rng_times_over_minus rng_times_one rng_plus_ac_1 rng_plus_inv rng_plus_zero
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin setElimination rename hypothesisEquality hypothesis dependent_set_memberEquality productElimination sqequalRule functionExtensionality applyEquality because_Cache cumulativity isect_memberEquality axiomEquality equalityTransitivity equalitySymmetry universeEquality independent_isectElimination hyp_replacement applyLambdaEquality productEquality lambdaEquality independent_pairFormation setEquality dependent_functionElimination lambdaFormation independent_pairEquality voidElimination voidEquality imageElimination natural_numberEquality imageMemberEquality baseClosed independent_functionElimination instantiate isectEquality unionElimination equalityElimination addLevel impliesFunctionality dependent_pairFormation promote_hyp

Latex:
\mforall{}[X:Type]
    \mforall{}[eq:EqDecider(X)].  \mforall{}[r:CRng].  \mforall{}[f,g:PowerSeries(X;r)].  \mforall{}[x:|r|].
        (g*\mlambda{}b.fps-div-coeff(eq;r;f;g;x;b))  =  f  supposing  (g[\{\}]  *  x)  =  1 
    supposing  valueall-type(X)



Date html generated: 2018_05_21-PM-09_55_37
Last ObjectModification: 2017_07_26-PM-06_32_44

Theory : power!series


Home Index