Nuprl Lemma : fps-elim-x_wf

[X:Type]. ∀[eq:EqDecider(X)]. ∀[r:CRng]. ∀[f:PowerSeries(X;r)]. ∀[x:X].  (f(x:=0) ∈ PowerSeries(X;r))


Proof




Definitions occuring in Statement :  fps-elim-x: f(x:=0) power-series: PowerSeries(X;r) deq: EqDecider(T) uall: [x:A]. B[x] member: t ∈ T universe: Type crng: CRng
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T fps-elim-x: f(x:=0)
Lemmas referenced :  fps-elim_wf power-series_wf crng_wf deq_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule applyEquality lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality because_Cache universeEquality

Latex:
\mforall{}[X:Type].  \mforall{}[eq:EqDecider(X)].  \mforall{}[r:CRng].  \mforall{}[f:PowerSeries(X;r)].  \mforall{}[x:X].
    (f(x:=0)  \mmember{}  PowerSeries(X;r))



Date html generated: 2016_05_15-PM-09_53_18
Last ObjectModification: 2015_12_27-PM-04_37_47

Theory : power!series


Home Index