Nuprl Lemma : fps-elim-x_wf
∀[X:Type]. ∀[eq:EqDecider(X)]. ∀[r:CRng]. ∀[f:PowerSeries(X;r)]. ∀[x:X].  (f(x:=0) ∈ PowerSeries(X;r))
Proof
Definitions occuring in Statement : 
fps-elim-x: f(x:=0)
, 
power-series: PowerSeries(X;r)
, 
deq: EqDecider(T)
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
universe: Type
, 
crng: CRng
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
fps-elim-x: f(x:=0)
Lemmas referenced : 
fps-elim_wf, 
power-series_wf, 
crng_wf, 
deq_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
applyEquality, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality, 
because_Cache, 
universeEquality
Latex:
\mforall{}[X:Type].  \mforall{}[eq:EqDecider(X)].  \mforall{}[r:CRng].  \mforall{}[f:PowerSeries(X;r)].  \mforall{}[x:X].
    (f(x:=0)  \mmember{}  PowerSeries(X;r))
Date html generated:
2016_05_15-PM-09_53_18
Last ObjectModification:
2015_12_27-PM-04_37_47
Theory : power!series
Home
Index