Nuprl Lemma : abmonoid_comm_fps

[X:Type]. ∀[r:CRng]. ∀[a,b:PowerSeries(X;r)].  ((a+b) (b+a) ∈ PowerSeries(X;r))


Proof




Definitions occuring in Statement :  fps-add: (f+g) power-series: PowerSeries(X;r) uall: [x:A]. B[x] universe: Type equal: t ∈ T crng: CRng
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T squash: T prop: true: True subtype_rel: A ⊆B uimplies: supposing a guard: {T} iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q implies:  Q
Lemmas referenced :  equal_wf squash_wf true_wf power-series_wf fps-add-comm fps-add_wf iff_weakening_equal crng_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut applyEquality thin lambdaEquality sqequalHypSubstitution imageElimination extract_by_obid isectElimination hypothesisEquality equalityTransitivity hypothesis equalitySymmetry universeEquality cumulativity natural_numberEquality sqequalRule imageMemberEquality baseClosed independent_isectElimination productElimination independent_functionElimination because_Cache isect_memberEquality axiomEquality

Latex:
\mforall{}[X:Type].  \mforall{}[r:CRng].  \mforall{}[a,b:PowerSeries(X;r)].    ((a+b)  =  (b+a))



Date html generated: 2018_05_21-PM-09_56_46
Last ObjectModification: 2017_07_26-PM-06_33_05

Theory : power!series


Home Index