Nuprl Lemma : fps-mul-single-general
∀[X:Type]
  ∀[eq:EqDecider(X)]. ∀[r:CRng]. ∀[c:bag(X)]. ∀[f:PowerSeries(X;r)].
    ((<c>*f) = (λb.case bag-diff(eq;b;c) of inl(d) => f[d] | inr(z) => 0) ∈ PowerSeries(X;r)) 
  supposing valueall-type(X)
Proof
Definitions occuring in Statement : 
fps-mul: (f*g), 
fps-single: <c>, 
fps-coeff: f[b], 
power-series: PowerSeries(X;r), 
bag-diff: bag-diff(eq;bs;as), 
bag: bag(T), 
deq: EqDecider(T), 
valueall-type: valueall-type(T), 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
lambda: λx.A[x], 
decide: case b of inl(x) => s[x] | inr(y) => t[y], 
universe: Type, 
equal: s = t ∈ T, 
crng: CRng, 
rng_zero: 0
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
uimplies: b supposing a, 
crng: CRng, 
comm: Comm(T;op), 
rng: Rng, 
power-series: PowerSeries(X;r), 
subtype_rel: A ⊆r B, 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
prop: ℙ, 
uiff: uiff(P;Q), 
and: P ∧ Q, 
fps-coeff: f[b], 
fps-mul: (f*g), 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
ring_p: IsRing(T;plus;zero;neg;times;one), 
group_p: IsGroup(T;op;id;inv), 
pi1: fst(t), 
pi2: snd(t), 
cand: A c∧ B, 
squash: ↓T, 
top: Top, 
true: True, 
guard: {T}, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
fps-single: <c>, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
ifthenelse: if b then t else f fi , 
bfalse: ff, 
exists: ∃x:A. B[x], 
or: P ∨ Q, 
sq_type: SQType(T), 
bnot: ¬bb, 
assert: ↑b, 
false: False, 
not: ¬A, 
infix_ap: x f y
Lemmas referenced : 
rng_plus_comm, 
crng_properties, 
rng_properties, 
fps-ext, 
fps-mul_wf, 
fps-single_wf, 
subtype_rel_self, 
bag_wf, 
rng_car_wf, 
bag-diff_wf, 
unit_wf2, 
fps-coeff_wf, 
rng_zero_wf, 
equal_wf, 
bag-diff-property, 
bag-append_wf, 
all_wf, 
not_wf, 
power-series_wf, 
crng_wf, 
deq_wf, 
valueall-type_wf, 
bag-partitions-with-one-given, 
bag-summation_wf, 
rng_plus_wf, 
rng_times_wf, 
crng_all_properties, 
squash_wf, 
true_wf, 
bag-summation-single, 
pi1_wf_top, 
pi2_wf, 
iff_weakening_equal, 
bag-eq_wf, 
bool_wf, 
eqtt_to_assert, 
assert-bag-eq, 
eqff_to_assert, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
member_wf, 
rng_times_one, 
bag-summation-filter, 
bag-partitions_wf, 
bag-summation-equal, 
ifthenelse_wf, 
bag-member_wf, 
rng_one_wf, 
rng_times_zero, 
bag-summation-is-zero, 
bag-member-partitions, 
and_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
setElimination, 
rename, 
hypothesisEquality, 
hypothesis, 
independent_isectElimination, 
applyEquality, 
sqequalRule, 
functionEquality, 
lambdaEquality, 
unionEquality, 
lambdaFormation, 
equalityTransitivity, 
equalitySymmetry, 
unionElimination, 
dependent_functionElimination, 
independent_functionElimination, 
productElimination, 
because_Cache, 
isect_memberEquality, 
axiomEquality, 
universeEquality, 
hyp_replacement, 
applyLambdaEquality, 
productEquality, 
cumulativity, 
independent_pairFormation, 
imageElimination, 
independent_pairEquality, 
voidElimination, 
voidEquality, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
instantiate, 
equalityElimination, 
dependent_pairFormation, 
promote_hyp, 
dependent_set_memberEquality
Latex:
\mforall{}[X:Type]
    \mforall{}[eq:EqDecider(X)].  \mforall{}[r:CRng].  \mforall{}[c:bag(X)].  \mforall{}[f:PowerSeries(X;r)].
        ((<c>*f)  =  (\mlambda{}b.case  bag-diff(eq;b;c)  of  inl(d)  =>  f[d]  |  inr(z)  =>  0)) 
    supposing  valueall-type(X)
Date html generated:
2019_10_16-AM-11_34_30
Last ObjectModification:
2018_08_21-PM-01_59_49
Theory : power!series
Home
Index