Nuprl Lemma : mul_over_minus_fps

[X:Type]
  ∀[eq:EqDecider(X)]. ∀[r:CRng]. ∀[a,b:PowerSeries(X;r)].
    (((-(a)*b) -((a*b)) ∈ PowerSeries(X;r)) ∧ ((a*-(b)) -((a*b)) ∈ PowerSeries(X;r))) 
  supposing valueall-type(X)


Proof




Definitions occuring in Statement :  fps-mul: (f*g) fps-neg: -(f) power-series: PowerSeries(X;r) deq: EqDecider(T) valueall-type: valueall-type(T) uimplies: supposing a uall: [x:A]. B[x] and: P ∧ Q universe: Type equal: t ∈ T crng: CRng
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a subtype_rel: A ⊆B fps-rng: fps-rng(r) rng_car: |r| pi1: fst(t) rng_times: * pi2: snd(t) rng_minus: -r infix_ap: y and: P ∧ Q
Lemmas referenced :  rng_times_over_minus fps-rng_wf crng_subtype_rng crng_wf deq_wf valueall-type_wf istype-universe
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality independent_isectElimination hypothesis applyEquality sqequalRule isect_memberEquality_alt productElimination independent_pairEquality axiomEquality isectIsTypeImplies inhabitedIsType universeIsType instantiate universeEquality

Latex:
\mforall{}[X:Type]
    \mforall{}[eq:EqDecider(X)].  \mforall{}[r:CRng].  \mforall{}[a,b:PowerSeries(X;r)].
        (((-(a)*b)  =  -((a*b)))  \mwedge{}  ((a*-(b))  =  -((a*b)))) 
    supposing  valueall-type(X)



Date html generated: 2020_05_20-AM-09_05_29
Last ObjectModification: 2020_02_03-PM-02_35_57

Theory : power!series


Home Index