Step
*
1
2
of Lemma
fps-compose-identity
1. X : Type
2. valueall-type(X)
3. eq : EqDecider(X)
4. r : CRng
5. f : PowerSeries(X;r)
6. x : X
7. fps-ucont(X;eq;r;f.f(x:=atom(x)))
8. fps-ucont(X;eq;r;f.f)
9. ∀f,g:PowerSeries(X;r). ((f+g)(x:=atom(x)) = (f(x:=atom(x))+g(x:=atom(x))) ∈ PowerSeries(X;r))
10. ∀f,g:PowerSeries(X;r). ((f+g) = (f+g) ∈ PowerSeries(X;r))
11. ∀c:|r|. ∀f:PowerSeries(X;r). ((c)*f(x:=atom(x)) = (c)*f(x:=atom(x)) ∈ PowerSeries(X;r))
12. ∀c:|r|. ∀f:PowerSeries(X;r). ((c)*f = (c)*f ∈ PowerSeries(X;r))
13. u : X
14. v : X List
15. <v>(x:=atom(x)) = <v> ∈ PowerSeries(X;r)
⊢ <[u / v]>(x:=atom(x)) = <[u / v]> ∈ PowerSeries(X;r)
BY
{ xxx((Fold `cons-bag` 0 THEN RWO "cons-bag-as-append" 0 THEN Auto) THEN RWO "fps-mul-single<" 0 THEN Auto)xxx }
1
1. X : Type
2. valueall-type(X)
3. eq : EqDecider(X)
4. r : CRng
5. f : PowerSeries(X;r)
6. x : X
7. fps-ucont(X;eq;r;f.f(x:=atom(x)))
8. fps-ucont(X;eq;r;f.f)
9. ∀f,g:PowerSeries(X;r). ((f+g)(x:=atom(x)) = (f(x:=atom(x))+g(x:=atom(x))) ∈ PowerSeries(X;r))
10. ∀f,g:PowerSeries(X;r). ((f+g) = (f+g) ∈ PowerSeries(X;r))
11. ∀c:|r|. ∀f:PowerSeries(X;r). ((c)*f(x:=atom(x)) = (c)*f(x:=atom(x)) ∈ PowerSeries(X;r))
12. ∀c:|r|. ∀f:PowerSeries(X;r). ((c)*f = (c)*f ∈ PowerSeries(X;r))
13. u : X
14. v : X List
15. <v>(x:=atom(x)) = <v> ∈ PowerSeries(X;r)
⊢ (<{u}>*<v>)(x:=atom(x)) = (<{u}>*<v>) ∈ PowerSeries(X;r)
Latex:
Latex:
1. X : Type
2. valueall-type(X)
3. eq : EqDecider(X)
4. r : CRng
5. f : PowerSeries(X;r)
6. x : X
7. fps-ucont(X;eq;r;f.f(x:=atom(x)))
8. fps-ucont(X;eq;r;f.f)
9. \mforall{}f,g:PowerSeries(X;r). ((f+g)(x:=atom(x)) = (f(x:=atom(x))+g(x:=atom(x))))
10. \mforall{}f,g:PowerSeries(X;r). ((f+g) = (f+g))
11. \mforall{}c:|r|. \mforall{}f:PowerSeries(X;r). ((c)*f(x:=atom(x)) = (c)*f(x:=atom(x)))
12. \mforall{}c:|r|. \mforall{}f:PowerSeries(X;r). ((c)*f = (c)*f)
13. u : X
14. v : X List
15. <v>(x:=atom(x)) = <v>
\mvdash{} <[u / v]>(x:=atom(x)) = <[u / v]>
By
Latex:
xxx((Fold `cons-bag` 0 THEN RWO "cons-bag-as-append" 0 THEN Auto)
THEN RWO "fps-mul-single<" 0
THEN Auto)xxx
Home
Index