Nuprl Lemma : fps-compose-identity

[X:Type]
  ∀[eq:EqDecider(X)]. ∀[r:CRng]. ∀[f:PowerSeries(X;r)]. ∀[x:X].  (f(x:=atom(x)) f ∈ PowerSeries(X;r)) 
  supposing valueall-type(X)


Proof




Definitions occuring in Statement :  fps-compose: g(x:=f) fps-atom: atom(x) power-series: PowerSeries(X;r) deq: EqDecider(T) valueall-type: valueall-type(T) uimplies: supposing a uall: [x:A]. B[x] universe: Type equal: t ∈ T crng: CRng
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a so_lambda: λ2x.t[x] so_apply: x[s] and: P ∧ Q cand: c∧ B all: x:A. B[x] squash: T prop: true: True subtype_rel: A ⊆B guard: {T} iff: ⇐⇒ Q rev_implies:  Q implies:  Q crng: CRng rng: Rng fps-compose: g(x:=f) exists: x:A. B[x] uiff: uiff(P;Q) fps-one: 1 fps-coeff: f[b] fps-single: <c> empty-bag: {} bool: 𝔹 unit: Unit it: btrue: tt ifthenelse: if then else fi  bfalse: ff or: P ∨ Q sq_type: SQType(T) bnot: ¬bb assert: b false: False not: ¬A cons-bag: x.b top: Top fps-atom: atom(x) deq: EqDecider(T) eqof: eqof(d) bag-eq: bag-eq(eq;as;bs) band: p ∧b q bag-all: bag-all(x.p[x];bs) bag-reduce: bag-reduce(x,y.f[x; y];zero;bs) reduce: reduce(f;k;as) list_ind: list_ind bag-map: bag-map(f;bs) map: map(f;as) nil: [] single-bag: {x} cons: [a b] lt_int: i <j bag-count: (#x in bs) count: count(P;L) rng_zero: 0 pi1: fst(t) pi2: snd(t) fps-sub: (f-g)
Lemmas referenced :  fps-linear-ucont-equal fps-compose_wf fps-atom_wf power-series_wf fps-compose-ucont fps-id-ucont equal_wf squash_wf true_wf fps-compose-add fps-add_wf iff_weakening_equal fps-compose-scalar-mul fps-scalar-mul_wf rng_car_wf bag_wf crng_wf deq_wf valueall-type_wf bag_to_squash_list list_induction fps-single_wf list-subtype-bag list_wf fps-compose-one fps-one_wf fps-ext nil_wf bag-eq_wf empty-bag_wf bool_wf eqtt_to_assert assert-bag-eq bag-null_wf assert-bag-null rng_one_wf eqff_to_assert bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot equal-wf-T-base rng_zero_wf single-bag_wf cons-bag-as-append fps-mul-single fps-compose-mul fps-mul_wf safe-assert-deq fps-compose-atom-neq fps-compose-atom-eq fps-sub_wf fps-scalar-mul-zero neg_id_fps mon_ident_fps
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin because_Cache independent_isectElimination hypothesis hypothesisEquality sqequalRule lambdaEquality cumulativity dependent_functionElimination independent_pairFormation lambdaFormation applyEquality imageElimination equalityTransitivity equalitySymmetry natural_numberEquality imageMemberEquality baseClosed universeEquality productElimination independent_functionElimination setElimination rename applyLambdaEquality functionExtensionality isect_memberEquality axiomEquality promote_hyp hyp_replacement voidEquality voidElimination unionElimination equalityElimination dependent_pairFormation instantiate equalityUniverse levelHypothesis

Latex:
\mforall{}[X:Type]
    \mforall{}[eq:EqDecider(X)].  \mforall{}[r:CRng].  \mforall{}[f:PowerSeries(X;r)].  \mforall{}[x:X].    (f(x:=atom(x))  =  f) 
    supposing  valueall-type(X)



Date html generated: 2018_05_21-PM-10_11_49
Last ObjectModification: 2017_07_26-PM-06_34_46

Theory : power!series


Home Index