Nuprl Lemma : fps-compose-mul

[X:Type]
  ∀[eq:EqDecider(X)]. ∀[r:CRng]. ∀[x:X]. ∀[g,f,h:PowerSeries(X;r)].
    ((g*h)(x:=f) (g(x:=f)*h(x:=f)) ∈ PowerSeries(X;r)) 
  supposing valueall-type(X)


Proof




Definitions occuring in Statement :  fps-compose: g(x:=f) fps-mul: (f*g) power-series: PowerSeries(X;r) deq: EqDecider(T) valueall-type: valueall-type(T) uimplies: supposing a uall: [x:A]. B[x] universe: Type equal: t ∈ T crng: CRng
Definitions unfolded in proof :  infix_ap: y prop: group_p: IsGroup(T;op;id;inv) ring_p: IsRing(T;plus;zero;neg;times;one) implies:  Q rev_implies:  Q iff: ⇐⇒ Q guard: {T} so_apply: x[s1;s2] so_lambda: λ2y.t[x; y] squash: T true: True top: Top pi2: snd(t) pi1: fst(t) fps-coeff: f[b] fps-mul: (f*g) fps-compose: g(x:=f) uiff: uiff(P;Q) so_apply: x[s] power-series: PowerSeries(X;r) so_lambda: λ2x.t[x] subtype_rel: A ⊆B listp: List+ rng: Rng all: x:A. B[x] cand: c∧ B and: P ∧ Q comm: Comm(T;op) crng: CRng uimplies: supposing a member: t ∈ T uall: [x:A]. B[x] compose: g spreadn: spread3 or: P ∨ Q sq_or: a ↓∨ b false: False not: ¬A hdp: hdp(L) tlp: tlp(L) exists: x:A. B[x] satisfiable_int_formula: satisfiable_int_formula(fmla) decidable: Dec(P) nat: ge: i ≥  lelt: i ≤ j < k int_seg: {i..j-} cons: [a b] it: nil: [] list_ind: list_ind length: ||as|| less_than': less_than'(a;b) le: A ≤ B int_iseg: {i...j} sq_type: SQType(T) label: ...$L... t bag-append: as bs bag-product: Πx ∈ b. f[x] bag-member: x ↓∈ bs subtract: m inject: Inj(A;B;f) respects-equality: respects-equality(S;T) rev_uimplies: rev_uimplies(P;Q) sq_stable: SqStable(P) cons-bag: x.b assert: b bnot: ¬bb bfalse: ff less_than: a < b ifthenelse: if then else fi  btrue: tt unit: Unit bool: 𝔹
Lemmas referenced :  bag-summation-ring-linear1 subtype_rel_self comm_wf assoc_wf true_wf squash_wf bag-summation-product bag-map_wf bag-combine_wf iff_weakening_equal bag-product_wf equal_wf bag-double-summation2 istype-void pi1_wf_top bag-parts'_wf length_wf_nat bag-rep_wf hd_wf bag-append_wf bag-partitions_wf infix_ap_wf rng_zero_wf rng_plus_wf bag-summation_wf istype-universe valueall-type_wf deq_wf crng_wf power-series_wf fps-mul_wf fps-compose_wf fps-ext list-subtype-bag tl_wf rng_one_wf rng_times_wf rng_car_wf bag-product_wf rng_properties crng_properties crng_all_properties listp_wf bag_wf listp_properties rng_plus_comm subtype_rel_product list_wf istype-top pi2_wf top_wf bag-summation-reindex bag-summation-equal2 bag-member_wf bag-map-combine compose_wf bag-map-trivial bag-map-map nth_tl_wf bag-co-restrict_wf bag-restrict_wf bag-size_wf firstn_wf bag-co-restrict-property bag-member-append reduce_hd_cons_lemma cons-listp not_wf bag-parts'_wf2 hdp_wf tlp_wf reduce_tl_cons_lemma bag-restrict-rep bag-restrict-append bag-co-restrict-rep bag-co-restrict-append bag-subtype-list bag-append-empty bag-size-rep bag-restrict-disjoint empty_bag_append_lemma nth_tl_append istype-less_than istype-le int_term_value_add_lemma int_formula_prop_less_lemma itermAdd_wf intformless_wf decidable__lt false_wf int_formula_prop_wf int_formula_prop_eq_lemma int_term_value_subtract_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_not_lemma int_formula_prop_and_lemma intformeq_wf itermSubtract_wf itermVar_wf itermConstant_wf intformle_wf intformnot_wf intformand_wf full-omega-unsat subtract-is-int-iff decidable__le nat_properties subtract_nat_wf length_tl istype-int le_wf length_wf subtype_rel_list firstn_append firstn_all bag-co-restrict-disjoint cons_wf non_neg_length length_of_cons_lemma product_subtype_list list-cases append_wf bag-member-partitions bag-member-map bag-member-parts' bag-member-combine equal-wf-T-base l_member_wf l_all_wf2 bag_qinc less_than_wf subtype_rel_set bag-union_wf bag-size-append istype-nat length_firstn subtract_wf decidable__equal_int length_nth_tl int_subtype_base set_subtype_base nat_wf subtype_base_sq bag-rep-size-restrict append_firstn_lastn_sq bag-append-comm bag-restrict-split bag-summation-append crng_times_ac_1 rng_times_assoc bag-extensionality-no-repeats decidable-equal-deq decidable__equal_bag decidable__equal_list decidable__equal_set decidable__equal_product strong-subtype-self strong-subtype-set3 strong-subtype-deq-subtype bag-deq_wf list-deq_wf product-deq_wf bag-combine-no-repeats le-add-cancel add-zero add-associates add_functionality_wrt_le add-commutes minus-one-mul-top zero-add minus-one-mul minus-add condition-implies-le not-lt-2 istype-false length_of_nil_lemma bag-map-no-repeats no-repeats-bag-partitions bag-parts'-no-repeats bag-subtype respects-equality-trivial respects-equality-set-trivial respects-equality-product bag-member-product general-append-cancellation cons_wf_listp bag-no-repeats_wf bag-settype subtype_rel_bag bag-combine-no-repeats2 bag-product-no-repeats bag-no-repeats-settype sq_stable__bag-member bag-append-union cons-bag-as-append bag-union-single single-bag_wf bag-append-ac bag-append-assoc2 l_contains-nth_tl l_contains-firstn l_all-l_contains assert_wf iff_weakening_uiff assert-bnot bool_subtype_base bool_cases_sqequal eqff_to_assert assert_of_lt_int eqtt_to_assert lt_int_wf bool_wf ifthenelse_wf general_length_nth_tl add-is-int-iff l_all_append bag-rep-add length-append
Rules used in proof :  functionIsType independent_functionElimination equalitySymmetry equalityTransitivity baseClosed imageMemberEquality imageElimination natural_numberEquality voidElimination independent_pairEquality dependent_functionElimination productIsType productEquality universeEquality instantiate isectIsTypeImplies axiomEquality isect_memberEquality_alt inhabitedIsType lambdaEquality_alt sqequalRule independent_isectElimination applyEquality because_Cache productElimination independent_pairFormation universeIsType lambdaFormation_alt hypothesis hypothesisEquality rename setElimination thin isectElimination sqequalHypSubstitution extract_by_obid cut introduction isect_memberFormation_alt sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution Error :memTop,  equalityIstype applyLambdaEquality hyp_replacement setIsType unionElimination dependent_set_memberEquality_alt setEquality addEquality int_eqEquality dependent_pairFormation_alt approximateComputation closedConclusion baseApply promote_hyp pointwiseFunctionality hypothesis_subsumption intEquality sqequalBase cumulativity dependent_pairEquality_alt minusEquality inlFormation_alt equalityElimination lambdaFormation lambdaEquality isect_memberEquality voidEquality

Latex:
\mforall{}[X:Type]
    \mforall{}[eq:EqDecider(X)].  \mforall{}[r:CRng].  \mforall{}[x:X].  \mforall{}[g,f,h:PowerSeries(X;r)].
        ((g*h)(x:=f)  =  (g(x:=f)*h(x:=f))) 
    supposing  valueall-type(X)



Date html generated: 2020_05_20-AM-09_07_02
Last ObjectModification: 2020_01_10-PM-02_36_13

Theory : power!series


Home Index