Nuprl Lemma : bag-restrict-rep
∀[T:Type]. ∀[eq:EqDecider(T)]. ∀[x:T]. ∀[n:ℕ].  ((bag-rep(n;x)|x) ~ bag-rep(n;x))
Proof
Definitions occuring in Statement : 
bag-restrict: (b|x), 
bag-rep: bag-rep(n;x), 
deq: EqDecider(T), 
nat: ℕ, 
uall: ∀[x:A]. B[x], 
universe: Type, 
sqequal: s ~ t
Definitions unfolded in proof : 
bag-rep: bag-rep(n;x), 
bag-restrict: (b|x), 
cons-bag: x.b, 
empty-bag: {}, 
bag-filter: [x∈b|p[x]], 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
nat: ℕ, 
implies: P ⇒ Q, 
false: False, 
ge: i ≥ j , 
uimplies: b supposing a, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
not: ¬A, 
all: ∀x:A. B[x], 
top: Top, 
and: P ∧ Q, 
prop: ℙ, 
decidable: Dec(P), 
or: P ∨ Q, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
uiff: uiff(P;Q), 
ifthenelse: if b then t else f fi , 
bfalse: ff, 
sq_type: SQType(T), 
guard: {T}, 
bnot: ¬bb, 
assert: ↑b, 
deq: EqDecider(T), 
eqof: eqof(d)
Lemmas referenced : 
nat_properties, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
intformless_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_wf, 
ge_wf, 
less_than_wf, 
primrec0_lemma, 
filter_nil_lemma, 
decidable__le, 
subtract_wf, 
intformnot_wf, 
itermSubtract_wf, 
int_formula_prop_not_lemma, 
int_term_value_subtract_lemma, 
nat_wf, 
deq_wf, 
eq_int_wf, 
bool_wf, 
eqtt_to_assert, 
assert_of_eq_int, 
eqff_to_assert, 
equal_wf, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
neg_assert_of_eq_int, 
filter_cons_lemma, 
safe-assert-deq, 
primrec-unroll
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
setElimination, 
rename, 
intWeakElimination, 
lambdaFormation, 
natural_numberEquality, 
independent_isectElimination, 
dependent_pairFormation, 
lambdaEquality, 
int_eqEquality, 
intEquality, 
dependent_functionElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
independent_pairFormation, 
computeAll, 
independent_functionElimination, 
sqequalAxiom, 
because_Cache, 
unionElimination, 
cumulativity, 
universeEquality, 
equalityElimination, 
equalityTransitivity, 
equalitySymmetry, 
productElimination, 
promote_hyp, 
instantiate, 
applyEquality
Latex:
\mforall{}[T:Type].  \mforall{}[eq:EqDecider(T)].  \mforall{}[x:T].  \mforall{}[n:\mBbbN{}].    ((bag-rep(n;x)|x)  \msim{}  bag-rep(n;x))
Date html generated:
2018_05_21-PM-09_52_59
Last ObjectModification:
2017_07_26-PM-06_32_13
Theory : bags_2
Home
Index