Nuprl Lemma : bag-restrict-rep

[T:Type]. ∀[eq:EqDecider(T)]. ∀[x:T]. ∀[n:ℕ].  ((bag-rep(n;x)|x) bag-rep(n;x))


Proof




Definitions occuring in Statement :  bag-restrict: (b|x) bag-rep: bag-rep(n;x) deq: EqDecider(T) nat: uall: [x:A]. B[x] universe: Type sqequal: t
Definitions unfolded in proof :  bag-rep: bag-rep(n;x) bag-restrict: (b|x) cons-bag: x.b empty-bag: {} bag-filter: [x∈b|p[x]] uall: [x:A]. B[x] member: t ∈ T nat: implies:  Q false: False ge: i ≥  uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] not: ¬A all: x:A. B[x] top: Top and: P ∧ Q prop: decidable: Dec(P) or: P ∨ Q bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) ifthenelse: if then else fi  bfalse: ff sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b deq: EqDecider(T) eqof: eqof(d)
Lemmas referenced :  nat_properties satisfiable-full-omega-tt intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf less_than_wf primrec0_lemma filter_nil_lemma decidable__le subtract_wf intformnot_wf itermSubtract_wf int_formula_prop_not_lemma int_term_value_subtract_lemma nat_wf deq_wf eq_int_wf bool_wf eqtt_to_assert assert_of_eq_int eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot neg_assert_of_eq_int filter_cons_lemma safe-assert-deq primrec-unroll
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis setElimination rename intWeakElimination lambdaFormation natural_numberEquality independent_isectElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality dependent_functionElimination isect_memberEquality voidElimination voidEquality independent_pairFormation computeAll independent_functionElimination sqequalAxiom because_Cache unionElimination cumulativity universeEquality equalityElimination equalityTransitivity equalitySymmetry productElimination promote_hyp instantiate applyEquality

Latex:
\mforall{}[T:Type].  \mforall{}[eq:EqDecider(T)].  \mforall{}[x:T].  \mforall{}[n:\mBbbN{}].    ((bag-rep(n;x)|x)  \msim{}  bag-rep(n;x))



Date html generated: 2018_05_21-PM-09_52_59
Last ObjectModification: 2017_07_26-PM-06_32_13

Theory : bags_2


Home Index