Nuprl Lemma : bag-restrict-rep
∀[T:Type]. ∀[eq:EqDecider(T)]. ∀[x:T]. ∀[n:ℕ]. ((bag-rep(n;x)|x) ~ bag-rep(n;x))
Proof
Definitions occuring in Statement :
bag-restrict: (b|x)
,
bag-rep: bag-rep(n;x)
,
deq: EqDecider(T)
,
nat: ℕ
,
uall: ∀[x:A]. B[x]
,
universe: Type
,
sqequal: s ~ t
Definitions unfolded in proof :
bag-rep: bag-rep(n;x)
,
bag-restrict: (b|x)
,
cons-bag: x.b
,
empty-bag: {}
,
bag-filter: [x∈b|p[x]]
,
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
nat: ℕ
,
implies: P
⇒ Q
,
false: False
,
ge: i ≥ j
,
uimplies: b supposing a
,
satisfiable_int_formula: satisfiable_int_formula(fmla)
,
exists: ∃x:A. B[x]
,
not: ¬A
,
all: ∀x:A. B[x]
,
top: Top
,
and: P ∧ Q
,
prop: ℙ
,
decidable: Dec(P)
,
or: P ∨ Q
,
bool: 𝔹
,
unit: Unit
,
it: ⋅
,
btrue: tt
,
uiff: uiff(P;Q)
,
ifthenelse: if b then t else f fi
,
bfalse: ff
,
sq_type: SQType(T)
,
guard: {T}
,
bnot: ¬bb
,
assert: ↑b
,
deq: EqDecider(T)
,
eqof: eqof(d)
Lemmas referenced :
nat_properties,
satisfiable-full-omega-tt,
intformand_wf,
intformle_wf,
itermConstant_wf,
itermVar_wf,
intformless_wf,
int_formula_prop_and_lemma,
int_formula_prop_le_lemma,
int_term_value_constant_lemma,
int_term_value_var_lemma,
int_formula_prop_less_lemma,
int_formula_prop_wf,
ge_wf,
less_than_wf,
primrec0_lemma,
filter_nil_lemma,
decidable__le,
subtract_wf,
intformnot_wf,
itermSubtract_wf,
int_formula_prop_not_lemma,
int_term_value_subtract_lemma,
nat_wf,
deq_wf,
eq_int_wf,
bool_wf,
eqtt_to_assert,
assert_of_eq_int,
eqff_to_assert,
equal_wf,
bool_cases_sqequal,
subtype_base_sq,
bool_subtype_base,
assert-bnot,
neg_assert_of_eq_int,
filter_cons_lemma,
safe-assert-deq,
primrec-unroll
Rules used in proof :
sqequalSubstitution,
sqequalRule,
sqequalReflexivity,
sqequalTransitivity,
computationStep,
isect_memberFormation,
introduction,
cut,
extract_by_obid,
sqequalHypSubstitution,
isectElimination,
thin,
hypothesisEquality,
hypothesis,
setElimination,
rename,
intWeakElimination,
lambdaFormation,
natural_numberEquality,
independent_isectElimination,
dependent_pairFormation,
lambdaEquality,
int_eqEquality,
intEquality,
dependent_functionElimination,
isect_memberEquality,
voidElimination,
voidEquality,
independent_pairFormation,
computeAll,
independent_functionElimination,
sqequalAxiom,
because_Cache,
unionElimination,
cumulativity,
universeEquality,
equalityElimination,
equalityTransitivity,
equalitySymmetry,
productElimination,
promote_hyp,
instantiate,
applyEquality
Latex:
\mforall{}[T:Type]. \mforall{}[eq:EqDecider(T)]. \mforall{}[x:T]. \mforall{}[n:\mBbbN{}]. ((bag-rep(n;x)|x) \msim{} bag-rep(n;x))
Date html generated:
2018_05_21-PM-09_52_59
Last ObjectModification:
2017_07_26-PM-06_32_13
Theory : bags_2
Home
Index