Nuprl Lemma : fps-compose_wf

[X:Type]
  ∀[eq:EqDecider(X)]. ∀[r:CRng]. ∀[x:X]. ∀[g,f:PowerSeries(X;r)].  (g(x:=f) ∈ PowerSeries(X;r)) 
  supposing valueall-type(X)


Proof




Definitions occuring in Statement :  fps-compose: g(x:=f) power-series: PowerSeries(X;r) deq: EqDecider(T) valueall-type: valueall-type(T) uimplies: supposing a uall: [x:A]. B[x] member: t ∈ T universe: Type crng: CRng
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a fps-compose: g(x:=f) crng: CRng rng: Rng so_lambda: λ2x.t[x] listp: List+ subtype_rel: A ⊆B so_apply: x[s] and: P ∧ Q cand: c∧ B
Lemmas referenced :  bag-summation_wf listp_wf bag_wf rng_car_wf rng_plus_wf rng_zero_wf infix_ap_wf rng_times_wf fps-coeff_wf bag-append_wf hd_wf listp_properties bag-rep_wf length_wf_nat tl_wf list-subtype-bag bag-product_wf rng_one_wf subtype_rel_self rng_all_properties crng_all_properties bag-parts'_wf rng_plus_comm2 power-series_wf crng_wf deq_wf valueall-type_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lambdaEquality lemma_by_obid sqequalHypSubstitution isectElimination thin cumulativity hypothesisEquality hypothesis setElimination rename because_Cache sqequalRule independent_isectElimination applyEquality productElimination independent_pairFormation axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality universeEquality

Latex:
\mforall{}[X:Type]
    \mforall{}[eq:EqDecider(X)].  \mforall{}[r:CRng].  \mforall{}[x:X].  \mforall{}[g,f:PowerSeries(X;r)].    (g(x:=f)  \mmember{}  PowerSeries(X;r)) 
    supposing  valueall-type(X)



Date html generated: 2016_05_15-PM-09_53_48
Last ObjectModification: 2015_12_27-PM-04_37_12

Theory : power!series


Home Index