Nuprl Lemma : bag-parts'_wf
∀[T:Type]
  ∀[eq:EqDecider(T)]. ∀[x:T]. ∀[bs:bag(T)].  (bag-parts'(eq;bs;x) ∈ bag(bag(T) List+)) supposing valueall-type(T)
Proof
Definitions occuring in Statement : 
bag-parts': bag-parts'(eq;bs;x), 
bag: bag(T), 
listp: A List+, 
deq: EqDecider(T), 
valueall-type: valueall-type(T), 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
uimplies: b supposing a, 
bag-parts': bag-parts'(eq;bs;x), 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
uiff: uiff(P;Q), 
and: P ∧ Q, 
ifthenelse: if b then t else f fi , 
bfalse: ff, 
iff: P ⇐⇒ Q, 
not: ¬A, 
prop: ℙ, 
rev_implies: P ⇐ Q, 
listp: A List+, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
callbyvalueall: callbyvalueall, 
has-value: (a)↓, 
has-valueall: has-valueall(a), 
subtype_rel: A ⊆r B, 
nat: ℕ
Lemmas referenced : 
bag-null_wf, 
bool_wf, 
uiff_transitivity, 
equal-wf-T-base, 
assert_wf, 
bag_wf, 
eqtt_to_assert, 
assert-bag-null, 
single-bag_wf, 
listp_wf, 
cons_wf_listp, 
nil_wf, 
iff_transitivity, 
bnot_wf, 
not_wf, 
iff_weakening_uiff, 
eqff_to_assert, 
assert_of_bnot, 
valueall-type-has-valueall, 
bag-valueall-type, 
set-valueall-type, 
list_wf, 
less_than_wf, 
length_wf, 
list-valueall-type, 
bag-parts_wf, 
evalall-reduce, 
bag-append_wf, 
bag-map_wf, 
empty-bag_wf, 
bag-filter_wf, 
eq_int_wf, 
bag-count_wf, 
hd_wf, 
listp_properties, 
nat_wf, 
subtype_rel_bag, 
equal_wf, 
deq_wf, 
valueall-type_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
cumulativity, 
hypothesisEquality, 
hypothesis, 
lambdaFormation, 
unionElimination, 
equalityElimination, 
isectElimination, 
equalityTransitivity, 
equalitySymmetry, 
baseClosed, 
independent_functionElimination, 
because_Cache, 
productElimination, 
independent_isectElimination, 
independent_pairFormation, 
impliesFunctionality, 
lambdaEquality, 
natural_numberEquality, 
callbyvalueReduce, 
setElimination, 
rename, 
applyEquality, 
setEquality, 
axiomEquality, 
isect_memberEquality, 
universeEquality
Latex:
\mforall{}[T:Type]
    \mforall{}[eq:EqDecider(T)].  \mforall{}[x:T].  \mforall{}[bs:bag(T)].    (bag-parts'(eq;bs;x)  \mmember{}  bag(bag(T)  List\msupplus{})) 
    supposing  valueall-type(T)
Date html generated:
2018_05_21-PM-09_51_10
Last ObjectModification:
2017_07_26-PM-06_31_28
Theory : bags_2
Home
Index